当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A mechanics and electromagnetic scaling law for highly stretchable radio frequency electronics
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-07-14 , DOI: 10.1016/j.jmps.2024.105784 Zichen Zhao , Raudel Avila , Dongjun Bai , Danli Xia , Enxi She , Yonggang Huang , John A. Rogers , Zhaoqian Xie
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-07-14 , DOI: 10.1016/j.jmps.2024.105784 Zichen Zhao , Raudel Avila , Dongjun Bai , Danli Xia , Enxi She , Yonggang Huang , John A. Rogers , Zhaoqian Xie
Many classes of flexible and stretchable bio-integrated electronic systems rely on mechanically sensitive electromagnetic components, such as various forms of antennas for wireless communication and for harvesting energy through coupling with external power sources. This efficient wireless functionality can be important for body area network technologies and can enable operation without the weight and bulky size of batteries for power supply. Recently, antenna designs have received increased attention because their mechanical and electromagnetic properties significantly influence the wireless performance of bio-integrated electronics, particularly under excessive mechanical loads. These mechanical factors are critical for skin-integrated electronics during human motion, as complex skin deformations can damage the conductive traces of antennas, such as those used for near-field communication (NFC), leading to yield or fracture and affecting their electromagnetic stability. Serpentine interconnects have been proposed as a geometric alternative to in-plane circular or rectangular spiral antenna designs to improve the elastic stretchability of the metallic traces in NFC antennas and prevent mechanical fractures. Despite the use of serpentine interconnects within the physiologically relevant strain range for skin (<20 %), the electromagnetic stability of the antennas decreases. This instability, reflected by shifts in resonance frequency and scattering parameters due to inductance changes, reduces the antennas' wireless power transfer efficiency and readout range. Therefore, maintaining the electromagnetic stability of antennas, specifically NFC antennas, under various mechanical deformations has become a critical challenge in practical wireless skin-integrated applications, such as sensing and physiological monitoring. Here, we establish a new mechanics and electromagnetic scaling law that quantifies the inductance changes under strain in a rectangular-loop serpentine structure typically used for NFC wireless communication in stretchable electronics. We present a systematic analysis of the antenna's geometric parameters, material properties of the antenna and substrate, and the applied strain on the inductance change. Our findings demonstrate that the relative change of inductance is solely influenced by the serpentine structure's width-radius ratio, arc angle, aspect ratio of the NFC antennas, and the applied strain. Additionally, under physiological strain conditions for the skin, the relative change of inductance can be minimized to preserve the NFC antenna's performance and prevent mechanical fracture and electromagnetic stability loss.
中文翻译:
高可拉伸射频电子器件的力学和电磁缩放定律
许多类型的柔性和可拉伸的生物集成电子系统依赖于机械敏感的电磁元件,例如用于无线通信和通过与外部电源耦合来收集能量的各种形式的天线。这种高效的无线功能对于人体局域网技术非常重要,并且可以在没有重量和体积庞大的电源电池的情况下进行操作。最近,天线设计受到越来越多的关注,因为它们的机械和电磁特性显着影响生物集成电子设备的无线性能,特别是在机械负载过大的情况下。这些机械因素对于人体运动过程中的皮肤集成电子设备至关重要,因为复杂的皮肤变形可能会损坏天线的导电迹线,例如用于近场通信 (NFC) 的天线,导致屈服或断裂并影响其电磁稳定性。蛇形互连已被提议作为面内圆形或矩形螺旋天线设计的几何替代方案,以提高 NFC 天线中金属迹线的弹性拉伸性并防止机械断裂。尽管在皮肤生理相关应变范围内(<20%)使用蛇形互连,但天线的电磁稳定性会降低。这种不稳定性通过电感变化引起的谐振频率和散射参数的变化反映出来,降低了天线的无线电力传输效率和读出范围。 因此,在各种机械变形下保持天线(特别是 NFC 天线)的电磁稳定性已成为实际无线皮肤集成应用(例如传感和生理监测)中的关键挑战。在这里,我们建立了一种新的力学和电磁缩放定律,用于量化矩形环蛇形结构在应变下的电感变化,该结构通常用于可拉伸电子设备中的 NFC 无线通信。我们对天线的几何参数、天线和基板的材料特性以及施加的应变对电感变化进行了系统分析。我们的研究结果表明,电感的相对变化仅受蛇形结构的宽度半径比、弧角、NFC 天线的纵横比和施加的应变的影响。此外,在皮肤的生理应变条件下,可以最小化电感的相对变化,以保持NFC天线的性能并防止机械断裂和电磁稳定性损失。
更新日期:2024-07-14
中文翻译:
高可拉伸射频电子器件的力学和电磁缩放定律
许多类型的柔性和可拉伸的生物集成电子系统依赖于机械敏感的电磁元件,例如用于无线通信和通过与外部电源耦合来收集能量的各种形式的天线。这种高效的无线功能对于人体局域网技术非常重要,并且可以在没有重量和体积庞大的电源电池的情况下进行操作。最近,天线设计受到越来越多的关注,因为它们的机械和电磁特性显着影响生物集成电子设备的无线性能,特别是在机械负载过大的情况下。这些机械因素对于人体运动过程中的皮肤集成电子设备至关重要,因为复杂的皮肤变形可能会损坏天线的导电迹线,例如用于近场通信 (NFC) 的天线,导致屈服或断裂并影响其电磁稳定性。蛇形互连已被提议作为面内圆形或矩形螺旋天线设计的几何替代方案,以提高 NFC 天线中金属迹线的弹性拉伸性并防止机械断裂。尽管在皮肤生理相关应变范围内(<20%)使用蛇形互连,但天线的电磁稳定性会降低。这种不稳定性通过电感变化引起的谐振频率和散射参数的变化反映出来,降低了天线的无线电力传输效率和读出范围。 因此,在各种机械变形下保持天线(特别是 NFC 天线)的电磁稳定性已成为实际无线皮肤集成应用(例如传感和生理监测)中的关键挑战。在这里,我们建立了一种新的力学和电磁缩放定律,用于量化矩形环蛇形结构在应变下的电感变化,该结构通常用于可拉伸电子设备中的 NFC 无线通信。我们对天线的几何参数、天线和基板的材料特性以及施加的应变对电感变化进行了系统分析。我们的研究结果表明,电感的相对变化仅受蛇形结构的宽度半径比、弧角、NFC 天线的纵横比和施加的应变的影响。此外,在皮肤的生理应变条件下,可以最小化电感的相对变化,以保持NFC天线的性能并防止机械断裂和电磁稳定性损失。