当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polynomial Interpolation of Function Averages on Interval Segments
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-25 , DOI: 10.1137/23m1598271 Ludovico Bruni Bruno 1, 2 , Wolfgang Erb 1
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-25 , DOI: 10.1137/23m1598271 Ludovico Bruni Bruno 1, 2 , Wolfgang Erb 1
Affiliation
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1759-1781, August 2024.
Abstract. Motivated by polynomial approximations of differential forms, we study analytical and numerical properties of a polynomial interpolation problem that relies on function averages over interval segments. The usage of segment data gives rise to new theoretical and practical aspects that distinguish this problem considerably from classical nodal interpolation. We will analyze fundamental mathematical properties of this problem as existence, uniqueness, and numerical conditioning of its solution. In a few selected scenarios, we will provide concrete conditions for unisolvence and explicit Lagrange-type basis systems for its representation. To study the numerical conditioning, we will provide respective concrete bounds for the Lebesgue constant.
中文翻译:
区间段上函数平均值的多项式插值
《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1759-1781 页,2024 年 8 月。
抽象的。在微分形式多项式近似的推动下,我们研究了依赖于区间段上函数平均值的多项式插值问题的分析和数值性质。分段数据的使用带来了新的理论和实践方面的问题,使该问题与经典的节点插值有很大区别。我们将分析这个问题的基本数学属性,如其解的存在性、唯一性和数值条件。在一些选定的场景中,我们将提供无偿债能力的具体条件和明确的拉格朗日型基础系统来表示。为了研究数值条件,我们将为勒贝格常数提供各自的具体界限。
更新日期:2024-07-26
Abstract. Motivated by polynomial approximations of differential forms, we study analytical and numerical properties of a polynomial interpolation problem that relies on function averages over interval segments. The usage of segment data gives rise to new theoretical and practical aspects that distinguish this problem considerably from classical nodal interpolation. We will analyze fundamental mathematical properties of this problem as existence, uniqueness, and numerical conditioning of its solution. In a few selected scenarios, we will provide concrete conditions for unisolvence and explicit Lagrange-type basis systems for its representation. To study the numerical conditioning, we will provide respective concrete bounds for the Lebesgue constant.
中文翻译:
区间段上函数平均值的多项式插值
《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1759-1781 页,2024 年 8 月。
抽象的。在微分形式多项式近似的推动下,我们研究了依赖于区间段上函数平均值的多项式插值问题的分析和数值性质。分段数据的使用带来了新的理论和实践方面的问题,使该问题与经典的节点插值有很大区别。我们将分析这个问题的基本数学属性,如其解的存在性、唯一性和数值条件。在一些选定的场景中,我们将提供无偿债能力的具体条件和明确的拉格朗日型基础系统来表示。为了研究数值条件,我们将为勒贝格常数提供各自的具体界限。