当前位置: X-MOL 学术Journal of Enterprise Information Management › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Continuous intention usage of artificial intelligence enabled digital banks: a review of expectation confirmation model
Journal of Enterprise Information Management ( IF 7.4 ) Pub Date : 2024-07-29 , DOI: 10.1108/jeim-11-2023-0617
Puneett Bhatnagr , Anupama Rajesh , Richa Misra

Purpose

This study builds on a conceptual model by integrating AI features – Perceived intelligence (PIN) and anthropomorphism (PAN) – while extending expectation confirmation theory (ECT) factors – interaction quality (IQU), confirmation (CON), and customer experience (CSE) – to evaluate the continued intention to use (CIU) of AI-enabled digital banking services.

Design/methodology/approach

Data were collected through an online questionnaire administered to 390 digital banking customers in India. The data were further analysed, and the presented hypotheses were evaluated using partial least squares structural equation modelling (PLS-SEM).

Findings

The research indicates that perceived intelligence and anthropomorphism predict interaction quality. Interaction quality significantly impacts expectation confirmation, consumer experience, and the continuous intention to use digital banking services powered by AI technology. AI design will become a fundamental factor; thus, all interactions should be user-friendly, efficient, and reliable, and the successful implementation of AI in digital banking will largely depend on AI features.

Originality/value

This study is the first to demonstrate the effectiveness of an AI-ECT model for AI-enabled Indian digital banks. The user continuance intention to use digital banking in the context of AI has not yet been studied. These findings further enrich the literature on AI, digital banking, and information systems by focusing on the AI's Intelligence and Anthropomorphism variables in digital banks.



中文翻译:


人工智能赋能数字银行的持续意向使用:期望确认模型综述


 目的


本研究以概念模型为基础,整合了 AI 特征——感知智能 (PIN) 和拟人化 (PAN),同时扩展了期望确认理论 (ECT) 因素——交互质量 (IQU)、确认 (CON) 和客户体验 (CSE),以评估 AI 支持的数字银行服务的持续使用意向 (CIU)。


设计/方法/方法


数据是通过对印度 390 名数字银行客户进行的在线问卷收集的。进一步分析数据,并使用偏最小二乘结构方程模型 (PLS-SEM) 评估所提出的假设。

 发现


研究表明,感知智能和拟人化可以预测交互质量。交互质量会显著影响预期确认、消费者体验以及使用 AI 技术驱动的数字银行服务的持续意愿。AI 设计将成为基础因素;因此,所有交互都应该是用户友好、高效和可靠的,人工智能在数字银行中的成功实施将在很大程度上取决于人工智能功能。

 原创性/价值


这项研究首次证明了 AI-ECT 模型对支持 AI 的印度数字银行的有效性。尚未研究在 AI 背景下使用数字银行的用户持续意图。这些发现通过关注数字银行中人工智能的智能和拟人化变量,进一步丰富了关于人工智能、数字银行和信息系统的文献。

更新日期:2024-07-29
down
wechat
bug