Nature Climate Change ( IF 29.6 ) Pub Date : 2024-07-26 , DOI: 10.1038/s41558-024-02057-4 Craig R. See , Anna-Maria Virkkala , Susan M. Natali , Brendan M. Rogers , Marguerite Mauritz , Christina Biasi , Stef Bokhorst , Julia Boike , M. Syndonia Bret-Harte , Gerardo Celis , Namyi Chae , Torben R. Christensen , Sara June Murner , Sigrid Dengel , Han Dolman , Colin W. Edgar , Bo Elberling , Craig A. Emmerton , Eugénie S. Euskirchen , Mathias Göckede , Achim Grelle , Liam Heffernan , Manuel Helbig , David Holl , Elyn Humphreys , Hiroki Iwata , Järvi Järveoja , Hideki Kobayashi , John Kochendorfer , Pasi Kolari , Ayumi Kotani , Lars Kutzbach , Min Jung Kwon , Emma R. Lathrop , Efrén López-Blanco , Ivan Mammarella , Maija E. Marushchak , Mikhail Mastepanov , Yojiro Matsuura , Lutz Merbold , Gesa Meyer , Christina Minions , Mats B. Nilsson , Julia Nojeim , Steven F. Oberbauer , David Olefeldt , Sang-Jong Park , Frans-Jan W. Parmentier , Matthias Peichl , Darcy Peter , Roman Petrov , Rafael Poyatos , Anatoly S. Prokushkin , William Quinton , Heidi Rodenhizer , Torsten Sachs , Kathleen Savage , Christopher Schulze , Sofie Sjögersten , Oliver Sonnentag , Vincent L. St. Louis , Margaret S. Torn , Eeva-Stiina Tuittila , Masahito Ueyama , Andrej Varlagin , Carolina Voigt , Jennifer D. Watts , Donatella Zona , Viacheslav I. Zyryanov , Edward A. G. Schuur
Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2 flux across 181 ecosystems. We find an increase in the annual CO2 sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2 losses have substantially impacted the CO2 balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming.
中文翻译:
北部永久冻土生态系统的呼吸损失抵消了碳吸收的十年增加
苔原和北方生态系统涵盖北部环极地永久冻土区,正在经历快速的环境变化,对全球碳 (C) 预算产生重要影响。我们分析了多个年代际时间序列,其中包含 70 个永久冻土和非永久冻土生态系统的 302 个年度二氧化碳 (CO 2 ) 通量估计值,以及 181 个生态系统的 672 个夏季 CO 2通量估计值。我们发现非永久冻土生态系统的年度CO 2吸收量有所增加,但永久冻土生态系统并未增加,尽管夏季的吸收量也有类似的增加。因此,最近的非生长季节CO 2损失严重影响了永久冻土生态系统的CO 2平衡。此外,年际变化分析表明,在假定的氮限制地点和用水较少依赖夏季降水的地点,温暖的夏季会放大碳循环(提高生产力和呼吸作用)。我们的研究结果表明,水和养分的可用性将是这些生态系统对未来变暖的碳循环响应的重要预测因素。