当前位置: X-MOL 学术Combinatorica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Whitney Type Theorem for Surfaces: Characterising Graphs with Locally Planar Embeddings
Combinatorica ( IF 1.0 ) Pub Date : 2024-07-23 , DOI: 10.1007/s00493-024-00118-y
Johannes Carmesin

Given a graph G and a parameter r, we define the r-local matroid of G to be the matroid generated by its cycles of length at most r. Extending Whitney’s abstract planar duality theorem from 1932, we prove that for every r the r-local matroid of G is co-graphic if and only if G admits a certain type of embedding in a surface, which we call r-planar embedding. The maximum value of r such that a graph G admits an r-planar embedding is closely related to face-width, and such embeddings for this maximum value of r are quite often embeddings of minimum genus. Unlike minimum genus embeddings, these r-planar embeddings can be computed in polynomial time. This provides the first systematic and polynomially computable method to construct for every graph G a surface so that G embeds in that surface in an optimal way (phrased in our notion of r-planarity).



中文翻译:


曲面的惠特尼型定理:用局部平面嵌入表征图



给定图 G 和参数 r,我们将 G 的 r 局部拟阵定义为由其长度至多为 r 的循环生成的拟阵。扩展 1932 年惠特尼的抽象平面对偶定理,我们证明对于每个 r,G 的 r 局部拟阵是共图的,当且仅当 G 允许某种类型的嵌入在表面中,我们称之为 r 平面嵌入。使得图 G 允许 r 平面嵌入的 r 最大值与面宽密切相关,并且 r 最大值的这种嵌入通常是最小亏格的嵌入。与最小属嵌入不同,这些 r 平面嵌入可以在多项式时间内计算。这提供了第一个系统的、多项式可计算的方法来为每个图 G 构造一个表面,以便 G 以最佳方式嵌入该表面(用我们的 r 平面性概念来表述)。

更新日期:2024-07-23
down
wechat
bug