当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multimodal soft valve enables physical responsiveness for preemptive resilience of soft robots
Science Robotics ( IF 26.1 ) Pub Date : 2024-07-24 , DOI: 10.1126/scirobotics.adk9978
Marco Pontin 1, 2 , Dana D Damian 1, 2, 3
Affiliation  

Resilience is crucial for the self-preservation of biological systems: Humans recover from wounds thanks to an immune system that autonomously enacts a multistage response to promote healing. Similar passive mechanisms can enable pneumatic soft robots to overcome common faults such as bursts originating from punctures or overpressurization. Recent technological advancements, ranging from fault-tolerant controllers for robot reconfigurability to self-healing materials, have paved the way for robot resilience. However, these techniques require powerful processors and large datasets or external hardware. How to extend the operational life span of damaged soft robots with minimal computational and physical resources remains unclear. In this study, we demonstrated a multimodal pneumatic soft valve capable of passive resilient reactions, triggered by faults, to prevent or isolate damage in soft robots. In its forward operation mode, the valve, requiring a single supply pressure, isolated punctured soft inflatable elements from the rest of the soft robot in as fast as 21 milliseconds. In its reverse operation mode, the valve can passively protect robots against overpressurization caused by external disturbances, avoiding plastic deformations and bursts. Furthermore, the two modes combined enabled the creation of an endogenously controlled valve capable of autonomous burst isolation. We demonstrated the passive and quick response and the possibility of monolithic integration of the soft valve in grippers and crawling robots. The approach proposed in this study provides a distributed small-footprint alternative to controller-based resilience and is expected to help soft robots achieve uninterrupted long-lasting operation.

中文翻译:


多模式软阀可实现软机器人先发制人的物理响应能力



复原力对于生物系统的自我保护至关重要:人类能够从伤口中恢复,这要归功于免疫系统自主地做出多阶段反应以促进愈合。类似的被动机制可以使气动软机器人克服常见故障,例如刺穿或过压引起的爆裂。最近的技术进步,从用于机器人可重构性的容错控制器到自愈材料,为机器人的弹性铺平了道路。然而,这些技术需要强大的处理器和大型数据集或外部硬件。如何以最少的计算和物理资源来延长受损软机器人的使用寿命仍不清楚。在这项研究中,我们展示了一种多模式气动软阀,能够由故障触发被动弹性反应,以防止或隔离软机器人的损坏。在正向操作模式下,该阀门需要单一供应压力,可在最快 21 毫秒的时间内将刺穿的软体充气元件与软体机器人的其余部分隔离。在反向操作模式下,该阀门可以被动保护机器人免受外部干扰引起的超压,避免塑性变形和爆裂。此外,这两种模式的结合使得能够创建能够自主突发隔离的内源控制阀门。我们展示了软阀在抓取器和爬行机器人中的被动和快速响应以及单片集成的可能性。本研究提出的方法为基于控制器的弹性提供了一种分布式小足迹替代方案,有望帮助软机器人实现不间断的长期运行。
更新日期:2024-07-24
down
wechat
bug