当前位置:
X-MOL 学术
›
Environ. Microbiol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
When the going gets tough, the tough get going—Novel bacterial AAA+ disaggregases provide extreme heat resistance
Environmental Microbiology ( IF 4.3 ) Pub Date : 2024-07-23 , DOI: 10.1111/1462-2920.16677 Valentin Bohl 1 , Axel Mogk 1
Environmental Microbiology ( IF 4.3 ) Pub Date : 2024-07-23 , DOI: 10.1111/1462-2920.16677 Valentin Bohl 1 , Axel Mogk 1
Affiliation
Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the A TPase a ssociated with diverse cellular a ctivities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature‐based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man‐made stress conditions have emerged. These bacteria possess novel A TPase a ssociated with diverse cellular a ctivities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram‐negative or Gram‐positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.
中文翻译:
当事情变得艰难时,艰难的事情就开始了——新型细菌 AAA+ 解聚酶提供了极高的耐热性
热应激会导致蛋白质错误折叠和聚集,可能因必需蛋白质的损失而导致细胞死亡。细菌特别容易受到环境压力的影响,它们配备有解聚酶来拯救这些聚集的蛋白质。细菌 Hsp70 伴侣 DnaK 和一个TP酶一个与多种细胞相关一个活性蛋白 ClpB 形成细菌中的典型解聚酶。虽然这种组合在生理热应激期间有效发挥作用,但它对食品工业和诊所中使用的基于温度的灭菌方案引起的大规模聚集无效。这使得细菌无法抵御这些热过程。然而,能够承受极端的人为压力条件的细菌已经出现。这些细菌具有新颖的一个TP酶一个与多种细胞相关一个活动分解酶 ClpG 和 ClpL,它们是极端耐热性的关键参与者。这些解聚酶分别存在于选定的革兰氏阴性或革兰氏阳性细菌中,与 DnaK/ClpB 相比,它们表现出更高的热稳定性和更强的穿线能力,从而发挥优异的功能。这使得 ClpG 和 ClpL 能够在极端温度下运行并处理大而紧密的蛋白质聚集体,从而有助于耐热性。 ClpG 和 ClpL 的基因通常编码在移动基因组岛或接合质粒上,从而允许它们通过水平基因转移在细菌中快速传播。这威胁到灭菌方案的效率。 在这篇综述中,我们描述了迄今为止发现的各种细菌解聚酶,描述了它们的共性以及使这些新型解聚酶能够针对极端应激条件提供应激保护的具体特征。
更新日期:2024-07-23
中文翻译:
当事情变得艰难时,艰难的事情就开始了——新型细菌 AAA+ 解聚酶提供了极高的耐热性
热应激会导致蛋白质错误折叠和聚集,可能因必需蛋白质的损失而导致细胞死亡。细菌特别容易受到环境压力的影响,它们配备有解聚酶来拯救这些聚集的蛋白质。细菌 Hsp70 伴侣 DnaK 和一个TP酶一个与多种细胞相关一个活性蛋白 ClpB 形成细菌中的典型解聚酶。虽然这种组合在生理热应激期间有效发挥作用,但它对食品工业和诊所中使用的基于温度的灭菌方案引起的大规模聚集无效。这使得细菌无法抵御这些热过程。然而,能够承受极端的人为压力条件的细菌已经出现。这些细菌具有新颖的一个TP酶一个与多种细胞相关一个活动分解酶 ClpG 和 ClpL,它们是极端耐热性的关键参与者。这些解聚酶分别存在于选定的革兰氏阴性或革兰氏阳性细菌中,与 DnaK/ClpB 相比,它们表现出更高的热稳定性和更强的穿线能力,从而发挥优异的功能。这使得 ClpG 和 ClpL 能够在极端温度下运行并处理大而紧密的蛋白质聚集体,从而有助于耐热性。 ClpG 和 ClpL 的基因通常编码在移动基因组岛或接合质粒上,从而允许它们通过水平基因转移在细菌中快速传播。这威胁到灭菌方案的效率。 在这篇综述中,我们描述了迄今为止发现的各种细菌解聚酶,描述了它们的共性以及使这些新型解聚酶能够针对极端应激条件提供应激保护的具体特征。