当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Duality-Based Error Control for the Signorini Problem
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-23 , DOI: 10.1137/22m1534791 Ben S. Ashby 1 , Tristan Pryer 2
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-23 , DOI: 10.1137/22m1534791 Ben S. Ashby 1 , Tristan Pryer 2
Affiliation
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1687-1712, August 2024.
Abstract. In this paper we study the a posteriori bounds for a conforming piecewise linear finite element approximation of the Signorini problem. We prove new rigorous a posteriori estimates of residual type in [math], for [math] in two spatial dimensions. This new analysis treats the positive and negative parts of the discretization error separately, requiring a novel sign- and bound-preserving interpolant, which is shown to have optimal approximation properties. The estimates rely on the sharp dual stability results on the problem in [math] for any [math]. We summarize extensive numerical experiments aimed at testing the robustness of the estimator to validate the theory.
中文翻译:
Signorini 问题的基于对偶的误差控制
《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1687-1712 页,2024 年 8 月。
抽象的。在本文中,我们研究 Signorini 问题的一致分段线性有限元近似的后验界限。我们证明了[数学]中残差类型的新严格后验估计,对于二维空间中的[数学]。这种新的分析分别处理离散化误差的正数和负数部分,需要一种新颖的符号和边界保留插值,该插值被证明具有最佳逼近属性。这些估计依赖于任何[数学]的[数学]问题的尖锐双稳定性结果。我们总结了广泛的数值实验,旨在测试估计器的稳健性以验证该理论。
更新日期:2024-07-24
Abstract. In this paper we study the a posteriori bounds for a conforming piecewise linear finite element approximation of the Signorini problem. We prove new rigorous a posteriori estimates of residual type in [math], for [math] in two spatial dimensions. This new analysis treats the positive and negative parts of the discretization error separately, requiring a novel sign- and bound-preserving interpolant, which is shown to have optimal approximation properties. The estimates rely on the sharp dual stability results on the problem in [math] for any [math]. We summarize extensive numerical experiments aimed at testing the robustness of the estimator to validate the theory.
中文翻译:
Signorini 问题的基于对偶的误差控制
《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1687-1712 页,2024 年 8 月。
抽象的。在本文中,我们研究 Signorini 问题的一致分段线性有限元近似的后验界限。我们证明了[数学]中残差类型的新严格后验估计,对于二维空间中的[数学]。这种新的分析分别处理离散化误差的正数和负数部分,需要一种新颖的符号和边界保留插值,该插值被证明具有最佳逼近属性。这些估计依赖于任何[数学]的[数学]问题的尖锐双稳定性结果。我们总结了广泛的数值实验,旨在测试估计器的稳健性以验证该理论。