当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Finite Element Discretization of the Steady, Generalized Navier–Stokes Equations with Inhomogeneous Dirichlet Boundary Conditions
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-23 , DOI: 10.1137/23m1607398 Julius Jeßberger 1 , Alex Kaltenbach 2
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-23 , DOI: 10.1137/23m1607398 Julius Jeßberger 1 , Alex Kaltenbach 2
Affiliation
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1660-1686, August 2024.
Abstract. We propose a finite element discretization for the steady, generalized Navier–Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.
中文翻译:
具有非齐次狄利克雷边界条件的稳态广义纳维-斯托克斯方程的有限元离散
《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1660-1686 页,2024 年 8 月。
抽象的。我们提出了对具有剪切相关粘度的流体的稳定广义纳维-斯托克斯方程进行有限元离散化,并使用非均匀狄利克雷边界条件和非均匀发散约束完成。我们建立了离散解的(弱)收敛性以及速度矢量场和标量运动压力的先验误差估计。数值实验补充了理论发现。
更新日期:2024-07-24
Abstract. We propose a finite element discretization for the steady, generalized Navier–Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.
中文翻译:
具有非齐次狄利克雷边界条件的稳态广义纳维-斯托克斯方程的有限元离散
《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1660-1686 页,2024 年 8 月。
抽象的。我们提出了对具有剪切相关粘度的流体的稳定广义纳维-斯托克斯方程进行有限元离散化,并使用非均匀狄利克雷边界条件和非均匀发散约束完成。我们建立了离散解的(弱)收敛性以及速度矢量场和标量运动压力的先验误差估计。数值实验补充了理论发现。