当前位置:
X-MOL 学术
›
ACS Macro Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polysquaramides
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsmacrolett.4c00383 Debabrata Konar 1 , Kevin A Stewart 1 , Jack Moerschel 1 , John F Rynk 1 , Brent S Sumerlin 1
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsmacrolett.4c00383 Debabrata Konar 1 , Kevin A Stewart 1 , Jack Moerschel 1 , John F Rynk 1 , Brent S Sumerlin 1
Affiliation
Thermoplastics, while advantageous for their processability and recyclability, often compromise thermochemical stability and mechanical strength compared to thermosets. Addressing this limitation, we introduce an innovative approach employing reversibly cross-linked polymers, utilizing squaramide moieties to reconcile recyclability and robustness. Herein, we detail the synthesis of supramolecularly cross-linked polysquaramides through the condensation polymerization of diethyl squarate with primary and secondary diamines. This methodology embeds hydrogen-bonding squaramide motifs into the polymer chains, yielding materials with significantly enhanced storage moduli, reaching up to 1.2 GPa. Material characterization via dynamic mechanical analysis, creep-recovery, and stress relaxation experiments delineate a distinctive rubbery plateau across a broad temperature range, excellent creep resistance, and multimodal viscoelastic flow, respectively, attributable to the dynamic nature of the supramolecular cross-links. Additionally, the study showcases the modulation of glass transition temperature (Tg) by altering the monomer composition and stoichiometry, demonstrating the tunability of polymer viscoelastic properties through precise control over hydrogen bonding interactions. Overall, the incorporation of squaramide motifs not only provides the structural integrity and mechanical performance of these thermoplastics but also leads to engineering materials with tailored viscoelastic characteristics.
中文翻译:
聚方酰胺
热塑性塑料虽然具有可加工性和可回收性的优势,但与热固性塑料相比,通常会损害热化学稳定性和机械强度。为了解决这一限制,我们引入了一种创新方法,采用可逆交联聚合物,利用方酰胺部分来协调可回收性和坚固性。在此,我们详细介绍了通过方酸二乙酯与伯二胺和仲二胺的缩聚合成超分子交联聚方酰胺。该方法将氢键方酰胺基序嵌入聚合物链中,产生储能模量显着增强的材料,高达 1.2 GPa。通过动态力学分析、蠕变恢复和应力松弛实验进行材料表征,分别描绘出在宽温度范围内独特的橡胶平台、优异的抗蠕变性和多模态粘弹性流动,这归因于超分子交联的动态性质。此外,该研究展示了通过改变单体组成和化学计量来调节玻璃化转变温度( Tg ),证明了通过精确控制氢键相互作用来调节聚合物粘弹性能。总体而言,方酰胺基序的结合不仅提供了这些热塑性塑料的结构完整性和机械性能,而且还导致工程材料具有定制的粘弹性特性。
更新日期:2024-07-22
中文翻译:
聚方酰胺
热塑性塑料虽然具有可加工性和可回收性的优势,但与热固性塑料相比,通常会损害热化学稳定性和机械强度。为了解决这一限制,我们引入了一种创新方法,采用可逆交联聚合物,利用方酰胺部分来协调可回收性和坚固性。在此,我们详细介绍了通过方酸二乙酯与伯二胺和仲二胺的缩聚合成超分子交联聚方酰胺。该方法将氢键方酰胺基序嵌入聚合物链中,产生储能模量显着增强的材料,高达 1.2 GPa。通过动态力学分析、蠕变恢复和应力松弛实验进行材料表征,分别描绘出在宽温度范围内独特的橡胶平台、优异的抗蠕变性和多模态粘弹性流动,这归因于超分子交联的动态性质。此外,该研究展示了通过改变单体组成和化学计量来调节玻璃化转变温度( Tg ),证明了通过精确控制氢键相互作用来调节聚合物粘弹性能。总体而言,方酰胺基序的结合不仅提供了这些热塑性塑料的结构完整性和机械性能,而且还导致工程材料具有定制的粘弹性特性。