当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mitigation of Device Heterogeneity in Graphene Hall Sensor Arrays Using Per-Element Backgate Tuning
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsami.4c03288 Vasant Iyer 1 , Alan T Charlie Johnson 2 , Firooz Aflatouni 1 , David A Issadore 1, 3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsami.4c03288 Vasant Iyer 1 , Alan T Charlie Johnson 2 , Firooz Aflatouni 1 , David A Issadore 1, 3
Affiliation
Graphene Hall-effect magnetic field sensors (GHSs) exhibit high performance comparable to state-of-the-art commercial Hall sensors made from III–V semiconductors. Graphene is also amenable to CMOS-compatible fabrication processes, making GHSs attractive candidates for implementing magnetic sensor arrays for imaging fields in biosensing and scanning probe applications. However, their practical appeal is limited by response heterogeneity and drift, arising from the high sensitivity of two-dimensional (2D) materials to local device imperfections. To address this challenge, we designed a GHS array in which an individual backgate is added to each GHS, allowing the carrier density of each sensor to be electrostatically tuned independent of other sensors in the array. Compared to the constraints encountered when all devices are tuned with the same backgate, we expected that the flexibility afforded by individual tuning would allow for the array’s sensitivity, uniformity, and reconfigurability to be enhanced. We fabricated an array of 16 GHSs, each with its own backgate terminal, and characterized the ability to modulate GHS carrier density and Hall sensitivity within CMOS-compatible voltage ranges. We then demonstrated that individual device tuning can be used to break the trade-off between device sensitivity and uniformity in the GHS array, allowing for enhancement of both objectives. Our results showed that GHS arrays exhibiting >30% variability under single-backgate operation could be compensated using individual tuning to achieve <2% variability with minimal impact on the array sensitivity.
中文翻译:
使用每元件背栅调谐减轻石墨烯霍尔传感器阵列中的器件异质性
石墨烯霍尔效应磁场传感器 (GHS) 的高性能可与由 III-V 族半导体制成的最先进的商用霍尔传感器相媲美。石墨烯还适用于 CMOS 兼容的制造工艺,使 GHS 成为生物传感和扫描探针应用中成像领域磁性传感器阵列的有吸引力的候选者。然而,它们的实际吸引力受到响应异质性和漂移的限制,这是由于二维 (2D) 材料对局部器件缺陷的高敏感性造成的。为了应对这一挑战,我们设计了一个 GHS 阵列,其中每个 GHS 中添加了一个单独的背栅,从而允许每个传感器的载流子密度独立于阵列中的其他传感器进行静电调谐。与使用相同背栅调节所有器件时遇到的限制相比,我们预计单独调节所提供的灵活性将允许增强阵列的灵敏度、均匀性和可重构性。我们制造了 16 个 GHS 阵列,每个 GHS 都有自己的背栅端子,并表征了在 CMOS 兼容电压范围内调制 GHS 载流子密度和霍尔灵敏度的能力。然后,我们证明了单个设备调谐可用于打破 GHS 阵列中设备灵敏度和均匀性之间的权衡,从而增强这两个目标。我们的结果表明,GHS 阵列在单背栅操作下表现出 >30% 的变异性,可以使用单独调谐进行补偿,以实现 <2% 的变异性,同时对阵列灵敏度的影响最小。
更新日期:2024-07-22
中文翻译:
使用每元件背栅调谐减轻石墨烯霍尔传感器阵列中的器件异质性
石墨烯霍尔效应磁场传感器 (GHS) 的高性能可与由 III-V 族半导体制成的最先进的商用霍尔传感器相媲美。石墨烯还适用于 CMOS 兼容的制造工艺,使 GHS 成为生物传感和扫描探针应用中成像领域磁性传感器阵列的有吸引力的候选者。然而,它们的实际吸引力受到响应异质性和漂移的限制,这是由于二维 (2D) 材料对局部器件缺陷的高敏感性造成的。为了应对这一挑战,我们设计了一个 GHS 阵列,其中每个 GHS 中添加了一个单独的背栅,从而允许每个传感器的载流子密度独立于阵列中的其他传感器进行静电调谐。与使用相同背栅调节所有器件时遇到的限制相比,我们预计单独调节所提供的灵活性将允许增强阵列的灵敏度、均匀性和可重构性。我们制造了 16 个 GHS 阵列,每个 GHS 都有自己的背栅端子,并表征了在 CMOS 兼容电压范围内调制 GHS 载流子密度和霍尔灵敏度的能力。然后,我们证明了单个设备调谐可用于打破 GHS 阵列中设备灵敏度和均匀性之间的权衡,从而增强这两个目标。我们的结果表明,GHS 阵列在单背栅操作下表现出 >30% 的变异性,可以使用单独调谐进行补偿,以实现 <2% 的变异性,同时对阵列灵敏度的影响最小。