当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional Lithium Phytate/Carbon Nanotube Double-Layer-Modified Separators for High-Performance Lithium–Sulfur Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsami.4c04541
Jing Hu 1, 2 , Zhenyu Wang 1 , Huimin Yuan 1 , Mingyang Yang 1 , Jingjing Chen 2 , Xuelian Fu 1 , Zhiqiang Wang 1 , Wen Luo 1 , Yongcong Huang 1 , Fangchang Zhang 1 , Chen Liu 2 , Zhouguang Lu 1
Affiliation  

Li dendrite and the shuttle effect are the two primary hindrances to the commercial application of lithium–sulfur batteries (LSBs). Here, a multifunctional separator has been fabricated via successively coating carbon nanotubes (CNTs) and lithium phytate (LP) onto a commercial polypropylene (PP) separator to improve the performance of LSBs. The LP coating layer with abundant electronegative phosphate group as permselective ion sieve not only reduces the polysulfide shuttle but also facilitates uniform Li+ flux through the PP separator. And the highly conductive CNTs on the second layer act as a second collector to accelerate the reversible conversion of sulfide species. The synergistic effect of LP and CNTs further increases the electrolyte wettability and reaction kinetics of cells with a modified separator and suppresses the shuttle effect and growth of Li dendrite. Consequently, the LSBs present much enhanced rate performance and cyclic performance. It is expected that this study may generate an executable tactic for interface engineering of separator to accelerate the industrial application process of LSBs.

中文翻译:


用于高性能锂硫电池的多功能植酸锂/碳纳米管双层改性隔膜



锂枝晶和穿梭效应是锂硫电池(LSB)商业应用的两个主要障碍。在这里,通过在商用聚丙烯(PP)隔膜上连续涂覆碳纳米管(CNT)和植酸锂(LP)来制造多功能隔膜,以提高LSB的性能。具有丰富电负性磷酸基团的 LP 涂层作为选择性渗透离子筛,不仅减少了多硫化物的穿梭,而且有利于均匀的 Li +通量通过 PP 隔膜。第二层上的高导电碳纳米管充当第二集电极,加速硫化物物质的可逆转化。 LP和碳纳米管的协同效应进一步提高了改良隔膜电池的电解质润湿性和反应动力学,并抑制了锂枝晶的穿梭效应和生长。因此,LSB 呈现出大大增强的速率性能和循环性能。预计这项研究可能会产生一种可行的分离器界面工程策略,以加速LSB的工业应用进程。
更新日期:2024-07-22
down
wechat
bug