当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling the Photovoltage Formation Mechanism in Indium–Tin Oxide Branched Nanowires/Poly(3-Hexylthiophene) Photorechargeable Supercapacitors
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsami.4c04620
Won Seok Cho 1 , Jae Yong Park 1, 2 , Wan Jae Dong 1, 3 , Jong-Lam Lee 1
Affiliation  

Photorechargeable supercapacitors are promising next-generation renewable energy storage devices. Previously, a hybrid structure consisting of indium–tin oxide branched nanowires (ITO BRs) and poly(3-hexylthiophene) (P3HT) was demonstrated as a photorechargeable supercapacitor. However, the formation mechanism of photovoltage has not been studied. Herein, we experimentally investigated the photovoltage-determining parameters in the ITO BRs/P3HT photorechargeable supercapacitor by inserting a polyethylenimine ethoxylated (PEIE) interlayer or adding a phenyl-C61-butyric acid methyl ester (PCBM) electron acceptor. Coating the PEIE interlayer on ITO BRs decreased the work function by 0.5 eV and hindered the hole extraction from P3HT to ITO BRs, leading to interfacial recombination and a decrease in photovoltage. On the other hand, the addition of PCBM promoted the charge transfer of the electrons from P3HT to PCBM, enhanced the redox reaction at the PCBM/electrolyte interface, and reduced the number of accumulated electrons, leading to a decreased photovoltage. From these results, we found that two key parameters determine the photovoltage and charge storage capability; one is the interfacial recombination at the ITO BRs/P3HT interface and the other is the redox reaction at the P3HT/electrolyte interface.

中文翻译:


揭示氧化铟锡分支纳米线/聚(3-己基噻吩)光充电超级电容器中的光电压形成机制



光充电超级电容器是有前途的下一代可再生能源存储设备。此前,由氧化铟锡分支纳米线(ITO BR)和聚(3-己基噻吩)(P3HT)组成的混合结构被证明可以作为光充电超级电容器。然而,光电压的形成机制尚未得到研究。在此,我们通过插入聚乙烯亚胺乙氧基化(PEIE)夹层或添加苯基-C61-丁酸甲酯(PCBM)电子受体,实验研究了ITO BRs/P3HT光充电超级电容器中的光电压决定参数。在 ITO BR 上涂覆 PEIE 中间层使功函数降低了 0.5 eV,并阻碍了从 P3HT 到 ITO BR 的空穴提取,导致界面复合和光电压降低。另一方面,PCBM的添加促进了电子从P3HT到PCBM的电荷转移,增强了PCBM/电解质界面的氧化还原反应,减少了积累的电子数量,导致光电压降低。从这些结果中,我们发现两个关键参数决定了光电压和电荷存储能力;一种是ITO BRs/P3HT界面处的界面复合,另一种是P3HT/电解质界面处的氧化还原反应。
更新日期:2024-07-22
down
wechat
bug