当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Nitrogen-Doped Microporous Carbon via Crown Ether-Functionalized Benzoxazine-Linked Porous Organic Polymers for Enhanced CO2 Adsorption and Supercapacitor Applications
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-07-22 , DOI: 10.1021/acsami.4c05645
Mohamed Gamal Mohamed, Bo-Xuan Su, Shiao-Wei Kuo

Nitrogen-doped carbon materials, characterized by abundant microporous and nitrogen functionalities, exhibit significant potential for carbon dioxide capture and supercapacitors. In this study, a class of porous organic polymer (POP) were successfully synthesized by linking Cr-TPA-4BZ-Br4 and tetraethynylpyrene (Py-T). The model benzoxazine monomers of Cr-TPA-4BZ and Cr-TPA-4BZ-Br4 were synthesized using the traditional three-step method [involving CH═N formation, reduction by NaBH4, and Mannich condensation]. Subsequently, the Sonogashira coupling reaction connected the Cr-TPA-4BZ-Br4 and Py-T monomers, forming Cr-TPA-4BZ-Py-POP. The successful synthesis of Cr-TPA-4BZ-Br4 and Cr-TPA-4BZ-Py-POP was confirmed through various analytical techniques. After verifying the successful synthesis of Cr-TPA-4BZ-Py-POP, carbonization and KOH activation procedures were conducted. These crucial steps led to the formation of poly(Cr-TPA-4BZ-Py-POP)-800, a carbon material with a structure akin to graphite. In practical applications, poly(Cr-TPA-4BZ-Py-POP)-800 exhibited a noteworthy CO2 adsorption capacity of 4.4 mmol/g, along with specific capacitance values of 397.2 and 159.2 F g–1 at 0.5 A g–1 (measured in a three-electrode cell) and 1 A g–1 (measured in a symmetric coin cell), respectively. These exceptional dual capabilities stem from the optimal ratio of heteroatom doping. The outstanding performance of poly(Cr-TPA-4BZ-Py-POP)-800 microporous carbon holds significant promise for addressing contemporary energy and environmental challenges, making substantial contributions to both sectors.

中文翻译:


通过冠醚官能化苯并恶嗪连接的多孔有机聚合物形成坚固的氮掺杂微孔碳,用于增强二氧化碳吸附和超级电容器应用



氮掺杂碳材料具有丰富的微孔和氮功能,在二氧化碳捕获和超级电容器方面表现出巨大的潜力。本研究通过Cr-TPA-4BZ-Br 4与四乙炔基芘(Py-T)的连接成功合成了一类多孔有机聚合物(POP)。采用传统的三步法[CH=N形成、NaBH 4还原、曼尼希缩合]合成苯并恶嗪模型单体Cr-TPA-4BZ和Cr-TPA-4BZ-Br 4 。随后,Sonogashira偶联反应将Cr-TPA-4BZ-Br 4和Py-T单体连接起来,形成Cr-TPA-4BZ-Py-POP。通过各种分析技术证实了Cr-TPA-4BZ-Br 4和Cr-TPA-4BZ-Py-POP的成功合成。在验证Cr-TPA-4BZ-Py-POP的成功合成后,进行碳化和KOH活化程序。这些关键步骤导致聚(Cr-TPA-4BZ-Py-POP)-800的形成,这是一种结构类似于石墨的碳材料。在实际应用中,poly(Cr-TPA-4BZ-Py-POP)-800表现出令人瞩目的CO 2吸附容量,为4.4 mmol/g,在0.5 A g –1下的比电容值为397.2和159.2 F g –1 (在三电极电池中测量)和 1 A g –1 (在对称纽扣电池中测量)。这些卓越的双重能力源于最佳的杂原子掺杂比例。聚(Cr-TPA-4BZ-Py-POP)-800微孔碳的出色性能为解决当代能源和环境挑战带来了巨大前景,为这两个领域做出了重大贡献。
更新日期:2024-07-22
down
wechat
bug