当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-Engineered MoSe2/CeO2 Composites for Room-Temperature Gas Sensing with a Drastic Discrimination of NH3 and TEA Gases
ACS Sensors ( IF 8.2 ) Pub Date : 2024-07-23 , DOI: 10.1021/acssensors.4c00793
Sukhwinder Singh 1 , Ka Yoon Shin 1 , Sungjoon Moon 1 , Sang Sub Kim 2 , Hyoun Woo Kim 1
Affiliation  

Detecting and distinguishing between hazardous gases with similar odors by using conventional sensor technology for safeguarding human health and ensuring food safety are significant challenges. Bulky, costly, and power-hungry devices, such as that used for gas chromatography–mass spectrometry (GC–MS), are widely employed for gas sensing. Using a single chemiresistive semiconductor or electric nose (e-nose) gas sensor to achieve this objective is difficult, mainly because of its selectivity issue. Thus, there is a need to develop new materials with tunable and versatile sensing characteristics. Phase engineering of two-dimensional materials to better utilize their physiochemical properties has attracted considerable attention. Here, we show that MoSe2 phase-transition/CeO2 composites can be effectively used to distinguish ammonia (NH3) and triethylamine (TEA) at room temperature. The phase transition of nanocomposite samples from semimetallic (1T) to semiconducting (2H) prepared at different synthesis temperatures is confirmed via X-ray photoelectron spectroscopy (XPS). A composite sensor in which the 2H phase of MoSe2 is predominant lacks discrimination capability and is less responsive to NH3 and TEA. An MoSe2/CeO2 composite sensor with a higher 1T phase content exhibits high selectivity for NH3, whereas one with a higher 2H phase content (2H > 1T) shows more selective behavior toward TEA. For example, for 50% relative humidity, the MoSe2/CeO2 sensor’s signal changes from the baseline by 45% and 58% for 1 ppm of NH3 and TEA, respectively, indicating a low limit of detection (LOD) of 70 and 160 ppb, respectively. The composites’ superior sensing characteristics are mainly attributed to their large specific surface area, their numerous active sites, presence of defects, and the n-n type heterojunction between MoSe2 and CeO2. The sensing mechanism is elucidated using Raman spectroscopy, XPS, and GC–MS results. Their phase-transition characteristics render MoSe2/CeO2 sensors promising for use in distributed, low-cost, and room-temperature sensor networks, and they offer new opportunities for the development of integrated advanced smart sensing technologies for environmental and healthcare.

中文翻译:


用于室温气体传感的相工程 MoSe2/CeO2 复合材料,可显着区分 NH3 和 TEA 气体



利用传统的传感器技术检测并区分具有相似气味的有害气体,以保障人类健康和确保食品安全是一项重大挑战。体积庞大、成本高昂且耗电的设备,例如用于气相色谱-质谱 (GC-MS) 的设备,广泛用于气体传感。使用单个化学电阻半导体或电鼻(e-nose)气体传感器来实现这一目标很困难,主要是因为其选择性问题。因此,需要开发具有可调和多功能传感特性的新材料。为了更好地利用二维材料的物理化学性质而进行的相工程引起了人们的广泛关注。在这里,我们证明MoSe 2相变/CeO 2复合材料可以有效地用于在室温下区分氨(NH 3 )和三乙胺(TEA)。通过 X 射线光电子能谱 (XPS) 证实了在不同合成温度下制备的纳米复合材料样品从半金属 (1T) 到半导体 (2H) 的相变。以MoSe 2的2H相为主的复合传感器缺乏辨别能力并且对NH 3和TEA的响应较差。具有较高1T相含量的MoSe 2 /CeO 2复合传感器对NH 3表现出高选择性,而具有较高2H相含量(2H>1T)的MoSe 2 /CeO 2 复合传感器对TEA表现出更高的选择性。 例如,对于 50% 的相对湿度,对于 1 ppm 的 NH 3和 TEA,MoSe 2 /CeO 2传感器的信号相对于基线分别变化了 45% 和 58%,表明检测下限 (LOD) 为 70 和分别为 160 ppb。该复合材料优异的传感特性主要归因于其大的比表面积、大量的活性位点、缺陷的存在以及MoSe 2和CeO 2之间的nn型异质结。使用拉曼光谱、XPS 和 GC-MS 结果阐明了传感机制。它们的相变特性使得MoSe 2 /CeO 2传感器有望用于分布式、低成本和室温传感器网络,并且为环境和医疗保健领域的集成先进智能传感技术的开发提供了新的机遇。
更新日期:2024-07-23
down
wechat
bug