当前位置: X-MOL 学术Ecol. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to ‘Life history mediates the trade‐offs among different components of demographic resilience’
Ecology Letters ( IF 7.6 ) Pub Date : 2024-07-23 , DOI: 10.1111/ele.14468


Capdevila P, Stott I, Cant J, Beger M, Rowlands G, Grace M, Salguero-Gómez R. (2022) Life history mediates the trade-offs among different components of demographic resilience. Ecology Letters, 25(6), 1566–1579. https://doi.org/10.1111/ele.14004

The authors note a mistake in the calculation of resistance in the methods section, which alters the interpretation of some of the results. In the manuscript, we applied a correction to calculation of resistance (ρ_1$$ {\underset{\_}{\rho}}_1 $$) in Equation (3) by subtracting the first step attenuation from 1 (1 − ρ_1$$ {\underset{\_}{\rho}}_1 $$). Such subtraction in the formula was an error, and the correct calculation should simply be ρ_1$$ {\underset{\_}{\rho}}_1 $$ where values close to 1 correspond to high resistance and 0 to low resistance.

In Figure 2 of the original manuscript, we showed that the phylogenetic signal for resistance was 0.48 ± 0.26 (mean ± SE) in animals and 0.02 ± 0.04 in plants. When applying the correct calculation of resistance the phylogenetic signal remains virtually unaltered, with values of 0.45 ± 0.25 and 0.03 ± 0.04, respectively.

Details are in the caption following the image
FIGURE 2
Open in figure viewerPowerPoint
Evolutionary history explains a higher degree of variability of the demographic resilience in animals than in plants. Patterns of variation of demographic compensation, resistance and recovery time (Figure 1) for the examined 162 populations of 69 animal species and 748 populations of 232 plant species. Inward ring represents resistance, middle ring compensation and outer ring recovery time. Evolutionary history explains a greater amount of variability of demographic resilience in animals (a) than in plants (b). Values showed in each panel represent the mean values of compensation, resistance and recovery time per species. (a) In animals, the phylogenetic signal was stronger for compensation (0.63 ± 0.18, mean ± SE), than for resistance (0.48 ± 0.26) and recovery time (0.41 ± 0.21). Silhouettes represent, from the top in a clockwise direction, chimpanzee (Pan troglodytes), red grouper (Epinephelus morio), peregrine falcon (Falco peregrinus), common tern (Sterna hirundo), green sea turtle (Chelonia mydas), California sea lion (Zalophus californianus), polar bear (Ursus maritimus) and red deer (Cervus elaphus). (b) In plants, compensation (0.04 ± 0.05) and resistance (0.02 ± 0.04) show a weak phylogenetic signal, while recovery time had a stronger phylogenetic signal (0.66 ± 0.08). Silhouettes represent, from the top in a clockwise direction, woodland geranium (Geranium sylvaticum), wild plantain (Heliconia acuminata), white Cypress-pine (Callitris columellaris), alpine sea holly (Eryngium alpinum), purple pitcher plant (Sarracenia purpurea), Douglas's catchfly (Silene douglasii) and grey alder (Alnus incana). Silhouettes' source: phylopic.org.

In Figure 3 of the original manuscript, we showed that resistance and recovery time were positively associated in animals and slightly, negatively associated in plants. Also, resistance and compensation were positively associated in animals and plants. When applying the correct calculation of resistance, the same associations hold, but the correlation values are inverted. That is, resistance and recovery time are negatively correlated in animals (Figure 3a) and positively correlated in plants (Figure 3d), while resistance and compensation are negatively correlated for both animals (Figure 3d) and plants (Figure 3e).

Details are in the caption following the image
FIGURE 3
Open in figure viewerPowerPoint
The components of demographic resilience correlate differently for plants than for animals. Correlations between the components of resilience, (a, d) resistance versus recovery time, (b, e) resistance versus compensation and (c, f) recovery time versus compensation for 162 populations of 69 animal species (a–c) and 748 populations of 232 plant species (d–f). Insets show the distribution of the residual correlations between the components of resilience, where ρ represents the mean value of the distribution. Positive values of ρ indicate a positive correlation between components, and negative values represent a trade-off. The correlation between resistance and recovery time is (a) positive for animals but (d) negative for plants. Resistance and compensation are positively correlated in both (b) animals and (e) plants. Recovery time and compensation are (c) slightly positively correlated in animals and (f) slight negatively correlated in plants. The residual correlations were estimated by fitting a multivariate multilevel Bayesian model using compensation, resistance and recovery time as the response variable and with no predictors (see Methods).

In Figure 4 of the original version of our paper, we showed that resistance was negatively associated with generation time in animals, while it was positively associated in plants. We also showed that resistance was positively associated with reproductive output for both plants and animals. When applying the correct calculation of resistance, we again show that the associations hold, but naturally they are reversed (Figure 4). Resistance is positively associated with generation time in animals and negatively associated in plants (Figure 4b), and resistance is negatively associated with reproductive output in both plants and animals (Figure 4e).

Details are in the caption following the image
FIGURE 4
Open in figure viewerPowerPoint
The three components of demographic resilience—resistance, compensation and recovery time—strongly correlate with two key species life history traits: generation time and mean reproductive output. (a–c) display the correlations of (a) compensation, (b) resistance and (c) recovery time, with generation time. (d–f) display the correlations of (d) compensation, (e) resistance and (f) recovery time, with mean reproductive output. Here we show the correlations between the scaled values of the demographic resilience components of resistance, compensation and recovery time with the scaled values of generation time and reproductive output of 162 populations of 69 animal species (blue) and 748 populations of 232 plant species (orange). Lines represent the predictions from the multilevel Bayesian models (Table S2), where thin lines correspond to the predictions drawn from each of the 250 posterior samples of the model, and the thick line represents the mean outcome of the model.

In the original supplementary analyses, we showed that most of the correlations among the life history traits and the resilience components were not spurious. When applying the correct calculation of resistance, there are still discrepancies between the simulated and the natural populations in their association of resistance with life history traits. The only difference is that the relationships with resistance are inverted (Figure S1).

Details are in the caption following the image
FIGURE S1
Open in figure viewerPowerPoint
Compensation is more mathematically constrained than resistance and recovery time in relation to life history traits. Effect sizes of the models evaluating the relationship among the scaled values of resistance, compensation and recovery time with the scaled values of mean reproductive output, generation time and their interaction. The correlations were performed using 164 natural populations of 76 animal species (blue) and 621 natural populations of 190 plant species (orange) and the 5699 random MPMs with retrogression (Random, light grey), and 5700 random MPMs without retrogression (Random without retrogression, dark grey). The line thickness represents the 95%, 90% and 80% credible intervals of the effect sizes, while the dot represents the mean.

In the original supplementary analyses, we showed resistance was independent of body dimension for both animals and plants, with the slopes of these correlations showing no clear trend. This pattern holds for the updated version of the plot but with the resistance axis reversed (Figure S2b,e).

Details are in the caption following the image
FIGURE S2
Open in figure viewerPowerPoint
Correlation between the components of demographic resilience and body dimensions of animals (a, b and c) and plants (d, e and f). The correlations between the scaled values of the demographic resilience components of resistance, compensation and recovery time with the scaled values of adult body weight (g) of 149 natural populations of animals (blue) and 331 plants (orange). Lines represent the predictions from the multivariate multilevel Bayesian models (Table S2), where thin lines correspond to the predictions drawn from each of the 250 posterior samples of the model, and the thick line represents the mean outcome of the model.

In Figure S3 of the original supplementary materials, we showed that resistance did not have any clear association with the Raunkiær life forms. The updated version shows the same patterns, but with the resistance axes reversed (Figure S3, middle panel).

Details are in the caption following the image
FIGURE S3
Open in figure viewerPowerPoint
Demographic resilience components of plants classified according to Raunkiær life forms. We show here the posterior distributions of multivariate multilevel Bayesian models with scaled values of compensation, resistance and recovery time as response variables and the Raunkiær life form classification (Raunkiær 1934). n = indicates the number of populations for which this information was available.

In Figure S4 of the original supplementary materials, we showed that there was a high variation in the compensation, resistance and recovery time among the different conservation statuses of the species (Figure S4). These results remain unaltered, but the resistance axes are reversed (Figure S4, middle panels).

Details are in the caption following the image
FIGURE S4
Open in figure viewerPowerPoint
Demographic resilience components of species against their conservation status in animals (a) and plants (b). We show here the posterior distributions of multivariate multilevel Bayesian models for animals (a) and plants (b), with scaled values of compensation, resistance and recovery time as response variables and the conservation status of the studied species as reported on the IUCN Red List (IUCN 2017) as fixed effects. LC = Least Concerned, NT = Near Threatened, VU = Vulnerable, EN = Endangered, CR = Critically Endangered. n = indicates the sample size.


中文翻译:


更正“生活史调节人口弹性不同组成部分之间的权衡”



Capdevila P, Stott I, Cant J, Beger M, Rowlands G, Grace M, Salguero-Gómez R. (2022) 生活史调节人口弹性不同组成部分之间的权衡。生态学快报,25(6),1566–1579。 https://doi.org/10.1111/ele.14004


作者注意到方法部分中阻力计算中的一个错误,这改变了对某些结果的解释。在手稿中,我们通过从 1 (1 − ρ_1$$ {\underset{\_}{\rho}}_1 $$ ) 中减去第一步衰减,对公式 (3) 中的电阻 ( ρ_1$$ {\underset{\_}{\rho}}_1 $$ ) 计算进行了修正。公式中的这种减法是错误的,正确的计算应该是 ρ_1$$ {\underset{\_}{\rho}}_1 $$ ,其中接近1的值对应于高电阻,0对应于低电阻。


在原始手稿的图 2 中,我们表明动物中的抗性系统发育信号为 0.48±±0.26(平均值±±SE),植物中的系统发育信号为 0.02±±0.04。当应用正确的抗性计算时,系统发育信号实际上保持不变,其值分别为 0.45±0.25 和 0.03±0.04。

Details are in the caption following the image
 图2

在图查看器中打开PowerPoint

进化史解释了动物的人口弹性比植物具有更高程度的变异性。所检查的 69 个动物物种的 162 个种群和 232 个植物物种的 748 个种群的人口补偿、抵抗力和恢复时间的变化模式(图 1)。内环代表电阻,中环代表补偿,外环代表恢复时间。进化史解释了动物(a)比植物(b)人口弹性的更大变异性。每个面板中显示的值代表每个物种的补偿、抵抗和恢复时间的平均值。 (a)在动物中,补偿(0.63±0.18,平均值±SE)的系统发育信号强于抗性(0.48±0.26)和恢复时间(0.41±0.21)。轮廓从上到下顺时针方向分别代表黑猩猩 (Pan troglodytes)、红石斑鱼 (Epinephelus morio)、游隼 (Falco peregrinus)、普通燕鸥 (Sterna hirundo)、绿海龟 (Chelonia mydas)、加州海狮 ( Zalophus californianus)、北极熊 (Ursus maritimus) 和马鹿 (Cervus elaphus)。 (b)在植物中,补偿(0.04±0.05)和抗性(0.02±0.04)显示出较弱的系统发育信号,而恢复时间则具有较强的系统发育信号(0.66±0.08)。轮廓从顶部顺时针方向依次为林地天竺葵 (Geranium sylvaticum)、野生车前草 (Heliconia acuminata)、白柏松 (Callitris columellaris)、高山海冬青 (Eryngium alpinum)、紫色猪笼草 (Sarracenia purpurea)、道格拉斯捕蝇草 (Silene douglasii) 和灰桤木 (Alnus incana)。剪影来源:phylopic.org。


在原始手稿的图 3 中,我们表明,动物的抵抗力和恢复时间呈正相关,而植物的抵抗力和恢复时间呈轻微负相关。此外,动物和植物的抵抗力和补偿呈正相关。当应用正确的电阻计算时,相同的关联成立,但相关值相反。也就是说,阻力和恢复时间在动物中呈负相关(图 3a),在植物中呈正相关(图 3d),而阻力和补偿时间在动物(图 3d)和植物(图 3e)中均呈负相关。

Details are in the caption following the image
 图3

在图查看器中打开PowerPoint

植物与动物的人口弹性各组成部分的相关性不同。 69 个动物物种 (a-c) 和 748 个种群的 162 个种群的复原力组成部分之间的相关性,(a, d) 抵抗力与恢复时间,(b, e) 抵抗力与补偿,(c, f) 恢复时间与补偿232 种植物物种 (d–f)。插图显示了弹性各组成部分之间残差相关性的分布,其中 ρ 表示分布的平均值。 ρ 的正值表示分量之间的正相关,负值表示权衡。抵抗力和恢复时间之间的相关性对于动物来说是(a)正相关,但对于植物来说是负相关(d)。 (b) 动物和 (e) 植物中的抗性和补偿呈正相关。恢复时间和补偿 (c) 在动物中呈轻微正相关,(f) 在植物中呈轻微负相关。通过使用补偿、阻力和恢复时间作为响应变量并且没有预测变量来拟合多元多级贝叶斯模型来估计残差相关性(参见方法)。


在我们论文原始版本的图 4 中,我们表明动物的抗性与世代时间呈负相关,而在植物中则呈正相关。我们还表明,抗性与植物和动物的繁殖产量呈正相关。当应用正确的阻力计算时,我们再次证明这些关联成立,但它们自然是相反的(图 4)。在动物中,抗性与世代时间呈正相关;在植物中,抗性与世代时间呈负相关(图 4b);而在植物和动物中,抗性与繁殖产量呈负相关(图 4e)。

Details are in the caption following the image
 图4

在图查看器中打开PowerPoint

人口弹性的三个组成部分——抵抗力、补偿和恢复时间——与两个关键的物种生活史特征密切相关:世代时间和平均繁殖产出。 (a–c) 显示 (a) 补偿、(b) 电阻和 (c) 恢复时间与生成时间的相关性。 (d-f)显示(d)补偿、(e)阻力和(f)恢复时间与平均生殖输出的相关性。在这里,我们展示了 69 个动物物种的 162 个种群(蓝色)和 232 个植物物种的 748 个种群(橙色)的抵抗力、补偿和恢复时间的人口弹性成分的标度值与世代时间和繁殖产出的标度值之间的相关性。 )。线条代表多级贝叶斯模型(表 S2)的预测,其中细线对应于从模型的 250 个后验样本中的每一个中得出的预测,粗线代表模型的平均结果。


在最初的补充分析中,我们表明生活史特征和弹性成分之间的大多数相关性并不是虚假的。当应用正确的抗性计算时,模拟群体和自然群体之间的抗性与生活史特征的关联仍然存在差异。唯一的区别是与电阻的关系是相反的(图 S1)。

Details are in the caption following the image
 图 S1

在图查看器中打开PowerPoint

与生活史特征相关的补偿比抵抗和恢复时间在数学上受到更多限制。模型的效应大小评估了阻力、补偿和恢复时间的标度值与平均生殖输出、世代时间的标度值及其相互作用之间的关系。使用 76 种动物的 164 个自然种群(蓝色)和 190 种植物的 621 个自然种群(橙色)以及 5699 个有回归的随机 MPM(随机,浅灰色)和 5700 个无回归的随机 MPM(无回归的随机)进行相关性分析。 , 深灰色)。线条粗细代表效应大小的 95%、90% 和 80% 可信区间,而点代表平均值。


在最初的补充分析中,我们表明动物和植物的抗性与身体尺寸无关,这些相关性的斜率没有显示出明显的趋势。该模式适用于该图的更新版本,但阻力轴相反(图 S2b、e)。

Details are in the caption following the image
 图S2

在图查看器中打开PowerPoint

人口弹性组成部分与动物(a、b 和 c)和植物(d、e 和 f)身体尺寸之间的相关性。抵抗力、补偿和恢复时间的人口弹性成分的标度值与 149 个自然动物种群(蓝色)和 331 个植物种群(橙色)的成年体重(克)标度值之间的相关性。线条代表多元多级贝叶斯模型(表 S2)的预测,其中细线对应于从模型的 250 个后验样本中的每一个中得出的预测,粗线代表模型的平均结果。


在原始补充材料的图 S3 中,我们表明耐药性与 Raunkiær 生命形式没有任何明确的关联。更新后的版本显示了相同的模式,但阻力轴相反(图 S3,中图)。

Details are in the caption following the image
 图S3

在图查看器中打开PowerPoint

根据 Raunkiær 生命形式分类的植物的人口弹性组成部分。我们在这里展示了多元多级贝叶斯模型的后验分布,其中补偿、阻力和恢复时间的缩放值作为响应变量以及 Raunkiær 生命形式分类(Raunkiær 1934)。 n = 表示可获得该信息的人群数量。


在原始补充材料的图S4中,我们表明,不同保护状态的物种之间的补偿、抵抗和恢复时间存在很大差异(图S4)。这些结果保持不变,但阻力轴颠倒了(图 S4,中图)。

Details are in the caption following the image
 图S4

在图查看器中打开PowerPoint

动物 (a) 和植物 (b) 中物种的人口复原力成分及其保护状况。我们在此展示了动物 (a) 和植物 (b) 的多元多级贝叶斯模型的后验分布,以补偿、抵抗和恢复时间的缩放值作为响应变量,以及 IUCN 红色名录中报告的所研究物种的保护状态(IUCN 2017)作为固定效应。 LC = 最不关心、NT = 近危、VU = 脆弱、EN = 濒危、CR = 极度濒危。 n = 表示样本大小。
更新日期:2024-07-23
down
wechat
bug