当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Generalized Coordination Engineering Strategy for Single‐Atom Catalysts toward Efficient Hydrogen Peroxide Electrosynthesis
Advanced Materials ( IF 27.4 ) Pub Date : 2024-07-22 , DOI: 10.1002/adma.202406403
Wei Liu 1 , Rui Chen 1 , Zhiyuan Sang 1 , Zhenxin Li 1 , Jiahuan Nie 1 , Lichang Yin 2 , Feng Hou 1 , Ji Liang 1
Affiliation  

Designing non‐noble metal single‐atom catalysts (M‐SACs) for two‐electron oxygen reduction reaction (2e‐ORR) is attractive for the hydrogen peroxide (H2O2) electrosynthesis, in which the coordination configuration of the M‐SACs essentially affects the reaction activity and product selectivity. Though extensively investigated, a generalized coordination engineering strategy has not yet been proposed, which fundamentally hinders the rational design of M‐SACs with optimized catalytic capabilities. Herein, a generalized coordination engineering strategy is proposed for M‐SACs toward H2O2 electrosynthesis via introducing heteroatoms (e.g., oxygen or sulfur atoms) with higher or lower electronegativity than nitrogen atoms into the first sphere of metal‐N4 system to tailor their electronic structure and adjust the adsorption strength for *OOH intermediates, respectively, thus optimizing their electrocatalytic capability for 2e‐ORR. Specifically, the (O, N)‐coordinated Co SAC (Co‐N3O) and (S, N)‐coordinated Ni SAC (Ni‐N3S) are precisely synthesized, and both present superior 2e‐ORR activity (Eonset: ≈0.80 V versus RHE) and selectivity (≈90%) in alkaline conditions compared with conventional Co‐N4 and Ni‐N4 sites. The high H2O2 yield rates of 14.2 and 17.5 moL g−1 h−1 and long‐term stability over 12 h are respectively achieved for Co‐N3O and Ni‐N3S. Such favorable 2e‐ORR pathway of the catalysts is also theoretically confirmed by the kinetics simulations.

中文翻译:


用于高效过氧化氢电合成的单原子催化剂的广义协调工程策略



设计用于双电子氧还原反应(2e-ORR)的非贵金属单原子催化剂(M-SAC)对于过氧化氢(H2O2)电合成具有吸引力,其中M-SAC的配位构型本质上影响着反应活性和产物选择性。尽管进行了广泛的研究,但尚未提出通用的协调工程策略,这从根本上阻碍了具有优化催化能力的M-SAC的合理设计。在此,提出了一种针对 H2O2 电合成的 M-SAC 的广义配位工程策略,通过将电负性高于或低于氮原子的杂原子(例如氧或硫原子)引入到金属-N4 系统的第一球中来调整其电子结构和分别调整 *OOH 中间体的吸附强度,从而优化其对 2e-ORR 的电催化能力。具体来说,精确合成了(O,N)配位的Co SAC(Co-N3O)和(S,N)配位的Ni SAC(Ni-N3S),并且两者都表现出优异的2e-ORR活性(Eonset:约0.80 V)与 RHE 相比)和碱性条件下与传统 Co-N4 和 Ni-N4 位点相比的选择性(约 90%)。 Co-N3O 和 Ni-N3S 分别实现了 14.2 和 17.5 moL g−1 h−1 的高 H2O2 产率和超过 12 小时的长期稳定性。动力学模拟也从理论上证实了催化剂的这种有利的2e-ORR途径。
更新日期:2024-07-22
down
wechat
bug