当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tissue/Organ Adaptable Bioelectronic Silk‐Based Implants
Advanced Materials ( IF 27.4 ) Pub Date : 2024-07-22 , DOI: 10.1002/adma.202405892
Ziyi Zhu 1, 2 , Zhiwen Yan 3, 4 , Siyuan Ni 1, 2 , Huiran Yang 1 , Yating Xie 1, 5 , Xueying Wang 1, 2 , Dujuan Zou 1, 2, 6 , Chen Tao 1, 5 , Wanqi Jiang 1, 2 , Jianbo Jiang 1, 2 , Zexi Su 2, 6 , Yuxin Xia 1 , Zhitao Zhou 1, 2 , Liuyang Sun 1, 2, 6 , Cunyi Fan 3, 4 , Tiger H. Tao 1, 2, 5, 6, 7 , Xiaoling Wei 1, 2 , Yun Qian 3, 4 , Keyin Liu 1, 2
Affiliation  

Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water‐triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.

中文翻译:


组织/器官适应性生物电子丝基植入物



植入式生物电子设备旨在监测和调节生物体,需要功能和生物适应性。创新性地采用以其优异的生物相容性而闻名的纯丝来设计水触发的、几何可重构的膜,其上的功能可以通过微机电系统(MEMS)技术和特殊功能化的丝集成。一旦被水触发,这些装置可以在 10 分钟内经历程序化的形状变形,从而建立具有原生拟合几何形状的稳定的生物电子接口。为了证明这种方法的适用性,我们设计、制造并严格测试了缠绕的周围神经电极,证明了其在神经调节方面的功效,同时确保了成功植入的生物相容性。
更新日期:2024-07-22
down
wechat
bug