当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multimodal Approach Reveals the Symmetry-Breaking Pathway to the Broken Helix inEuIn2⁢As2
Physical Review X ( IF 11.6 ) Pub Date : 2024-07-22 , DOI: 10.1103/physrevx.14.031013
E. Donoway 1, 2 , T. V. Trevisan 1, 2 , A. Liebman-Peláez 1, 2 , R. P. Day 1, 2 , K. Yamakawa 1, 2 , Y. Sun 1, 2 , J. R. Soh 3 , D. Prabhakaran 4 , A. T. Boothroyd 4 , R. M. Fernandes 5 , J. G. Analytis 1, 2, 6, 7 , J. E. Moore 1, 2 , J. Orenstein 1, 2 , V. Sunko 1, 2
Affiliation  

Understanding and manipulating emergent phases, which are themes at the forefront of quantum-materials research, rely on identifying their underlying symmetries. This general principle has been particularly prominent in materials with coupled electronic and magnetic degrees of freedom, in which magnetic order influences the electronic band structure and can lead to exotic topological effects. However, identifying symmetry of a magnetically ordered phase can pose a challenge, particularly in the presence of small domains. Here we introduce a multimodal approach for determining magnetic structures, which combines symmetry-sensitive optical probes, scattering, and group-theoretical analysis. We apply it to EuIn2As2, a material that has received attention as a candidate axion insulator. While first-principles calculations predict this state on the assumption of a simple collinear antiferromagnetic structure, subsequent neutron-scattering measurements reveal a much more intricate magnetic ground state characterized by two coexisting magnetic wave vectors reached by successive thermal phase transitions. The proposed high- and low-temperature phases are a spin helix and a state with interpenetrating helical and Néel antiferromagnetic order termed a “broken helix,” respectively. Employing a multimodal approach, we identify the magnetic structure associated with these two phases of EuIn2As2. We find that the higher-temperature phase is characterized by a variation of the magnetic moment amplitude from layer to layer, with the moment vanishing entirely in every third Eu layer. The lower-temperature structure is similar to the broken helix, with one important difference: Because of local strain, the relative orientation of the magnetic structure and the lattice is not fixed. Consequently, the symmetry required to protect the axion phase is not generically protected in EuIn2As2, but we show that it can be restored if the magnetic structure is tuned with uniaxial strain. Finally, we present a spin Hamiltonian that identifies the spin interactions that account for the complex magnetic order in EuIn2As2. Our work highlights the importance of a multimodal approach in determining the symmetry of complex order parameters.

中文翻译:


多模态方法揭示了 EuIn2As2 中断裂螺旋的对称性破坏途径



理解和操纵紧急阶段是量子材料研究的最前沿主题,依赖于确定其潜在的对称性。这一一般原理在电子和磁自由度耦合的材料中尤为突出,其中磁序会影响电子能带结构,并可能导致奇特的拓扑效应。然而,识别磁序相的对称性可能是一项挑战,尤其是在存在小畴的情况下。在这里,我们介绍了一种确定磁性结构的多模态方法,该方法结合了对称敏感的光学探针、散射和群论分析。我们将其应用于 EuIn2As2,这是一种作为候选轴子绝缘体而受到关注的材料。虽然第一性原理计算在假设简单的共线反铁磁结构上预测了这种状态,但随后的中子散射测量揭示了一个更复杂的磁基态,其特征是通过连续的热相变达到两个共存的磁波矢量。提出的高温和低温相是自旋螺旋和具有相互穿脱的螺旋和 Néel 反铁磁序的状态,分别称为“断螺旋”。采用多模态方法,我们确定了与 EuIn2As2 的这两个相相关的磁性结构。我们发现,高温相的特征是磁矩幅度随层变化,每三个 Eu 层的磁矩完全消失。 低温结构与断裂螺旋结构相似,但有一个重要区别:由于局部应变,磁性结构和晶格的相对方向不是固定的。因此,保护轴子相所需的对称性在 EuIn2As2 中通常不受保护,但我们表明,如果用单轴应变调整磁性结构,则可以恢复它。最后,我们提出了一个自旋哈密顿量,它确定了解释 EuIn2As2 中复磁序的自旋相互作用。我们的工作强调了多模态方法在确定复阶参数对称性方面的重要性。
更新日期:2024-07-22
down
wechat
bug