Nature Astronomy ( IF 12.9 ) Pub Date : 2024-07-22 , DOI: 10.1038/s41550-024-02331-7 Bishwanath Gaire
Relativistic electron–positron pairs may be generated around black holes or neutron stars. However, exploring properties of such pairs has been limited to theory and simulation studies up to now due to difficulties in laboratory experiments. Recently, Charles Arrowsmith and colleagues reported the generation of high-density, quasi-neutral, relativistic electron–positron pair beams from a relativistic proton beam interaction with a solid target.
In the experiment, a relativistic (440 GeV/c) proton beam at CERN’s Super Proton Synchrotron accelerator interacts with a solid target composed of a low-Z material (graphite) and a high-Z converter (tantalum). In this process the proton beam is converted into pair beams with hadronic and electromagnetic cascades. The energy spectra of the pair beams are measured, and its power-law index is analysed. Other characteristics of the pair beams (for example — beam dimension, number density, beam temperature) are predicted by FLUKA simulations.
中文翻译:
实验室中的相对论电子-正电子对束
相对论性电子-正电子对可能在黑洞或中子星周围产生。然而,由于实验室实验的困难,迄今为止对此类对的性质的探索仅限于理论和模拟研究。最近,查尔斯·阿罗史密斯(Charles Arrowsmith)及其同事报告了通过相对论性质子束与固体靶的相互作用产生高密度、准中性、相对论性电子-正电子对束。
在实验中,CERN 超级质子同步加速器中的相对论 (440 GeV/c) 质子束与由低 Z 材料(石墨)和高 Z 转换器(钽)组成的固体靶相互作用。在此过程中,质子束被转换成具有强子和电磁级联的对束。测量了这对光束的能谱,并分析了其幂律指数。成对光束的其他特性(例如,光束尺寸、数量密度、光束温度)通过 FLUKA 模拟进行预测。