Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel
Analyst ( IF 3.6 ) Pub Date : 2024-07-22 , DOI: 10.1039/d4an00750f Chanyong Park 1 , Wanyoung Lim 2 , Ryungeun Song 1 , Jeonghun Han 1 , Daeun You 3 , Sangmin Kim 4 , Jeong Eon Lee 3, 5 , Danny van Noort 6 , Carl-Fredrik Mandenius 6 , Jinkee Lee 1, 7 , Kyung-A Hyun 8 , Hyo-Il Jung 8 , Sungsu Park 1, 2, 7
Analyst ( IF 3.6 ) Pub Date : 2024-07-22 , DOI: 10.1039/d4an00750f Chanyong Park 1 , Wanyoung Lim 2 , Ryungeun Song 1 , Jeonghun Han 1 , Daeun You 3 , Sangmin Kim 4 , Jeong Eon Lee 3, 5 , Danny van Noort 6 , Carl-Fredrik Mandenius 6 , Jinkee Lee 1, 7 , Kyung-A Hyun 8 , Hyo-Il Jung 8 , Sungsu Park 1, 2, 7
Affiliation
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.
中文翻译:
使用等腰梯形螺旋微通道有效分离大颗粒和巨型癌细胞
多倍体巨型癌细胞(PGCC)有助于肿瘤的遗传异质性和进化动力学。然而,它们的大小使得它们与主流肿瘤细胞群的分离变得复杂。荧光激活细胞分选 (FACS) 等标准技术依赖于荧光标记,这给后续 PGCC 分析带来了潜在的挑战。为此,我们开发了等腰梯形螺旋微通道 (ITSμC),这是一种微流体装置,可优化 Dean 曳力 ( F D ) 并利用均匀涡流来增强分离。数值模拟凸显了 ITSμC 与矩形和标准梯形通道相比在产生鲁棒F D 方面的优势。经验结果证实其能够将较大的聚苯乙烯 (PS) 颗粒(平均直径:50 μm)向内壁分离,同时将较小的聚苯乙烯(PS)颗粒(平均直径:23 μm)向外引导。利用 ITSμC,我们从多柔比星耐药三阴性乳腺癌 (DOXR-TNBC) 和患者来源的癌症 (PDC) 细胞中有效分离 PGCC,实现了出色的纯度、产量和存活率(均大于 90%)。这种精度是在没有荧光标记的情况下实现的,ITSμC 的多功能性表明它在区分各种异质细胞群方面具有潜力。
更新日期:2024-07-25
中文翻译:
使用等腰梯形螺旋微通道有效分离大颗粒和巨型癌细胞
多倍体巨型癌细胞(PGCC)有助于肿瘤的遗传异质性和进化动力学。然而,它们的大小使得它们与主流肿瘤细胞群的分离变得复杂。荧光激活细胞分选 (FACS) 等标准技术依赖于荧光标记,这给后续 PGCC 分析带来了潜在的挑战。为此,我们开发了等腰梯形螺旋微通道 (ITSμC),这是一种微流体装置,可优化 Dean 曳力 ( F D ) 并利用均匀涡流来增强分离。数值模拟凸显了 ITSμC 与矩形和标准梯形通道相比在产生鲁棒F D 方面的优势。经验结果证实其能够将较大的聚苯乙烯 (PS) 颗粒(平均直径:50 μm)向内壁分离,同时将较小的聚苯乙烯(PS)颗粒(平均直径:23 μm)向外引导。利用 ITSμC,我们从多柔比星耐药三阴性乳腺癌 (DOXR-TNBC) 和患者来源的癌症 (PDC) 细胞中有效分离 PGCC,实现了出色的纯度、产量和存活率(均大于 90%)。这种精度是在没有荧光标记的情况下实现的,ITSμC 的多功能性表明它在区分各种异质细胞群方面具有潜力。