Nature Chemical Biology ( IF 12.9 ) Pub Date : 2024-07-22 , DOI: 10.1038/s41589-024-01685-3 Elena V Aleksandrova 1 , Cong-Xuan Ma 2 , Dorota Klepacki 3, 4 , Faezeh Alizadeh 3, 4 , Nora Vázquez-Laslop 3, 4 , Jian-Hua Liang 2 , Yury S Polikanov 1, 3, 4 , Alexander S Mankin 3, 4
Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.
中文翻译:
Macrolones 靶向细菌核糖体和 DNA 促旋酶,可以逃避耐药机制
对靶向核糖体的大环内酯类抗生素的耐药性日益增长,这限制了它们的临床应用,并敦促寻找优质化合物。大片酮类药物是合成的大环内酯类衍生物,具有喹诺酮类侧链,结构类似于 DNA 拓扑异构酶靶向氟喹诺酮类药物。虽然大环酮类药物显示出增强的活性,但它们的作用方式仍然未知。在这里,我们介绍了核糖体结合的大环酮的第一个结构,表明大环内酯部分占据核糖体出口隧道中的大环内酯结合位点,而喹诺酮部分与隧道建立了新的相互作用。Macrolones 在体外有效抑制核糖体和 DNA 拓扑异构酶。然而,在细胞中,它们靶向核糖体或 DNA 促旋酶,或同时靶向两者。与单独使用大环内酯类或氟喹诺酮类抗生素相比,双靶点大环内酯类抗生素不易选择携带靶位点突变的耐药细菌或激活可诱导的大环内酯类耐药基因。此外,由于一些大环酮类药物与 Erm 修饰的核糖体结合,因此即使对具有组成型 erm 抗性基因的菌株,它们也保持活性。