当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational Control of Packing Arrangements in Organic Semiconducting Materials toward High-Performance Optoelectronics
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-07-19 , DOI: 10.1021/accountsmr.4c00054 Junfeng Guo 1, 2 , Chunfeng Shi 3 , Yonggang Zhen 1, 4 , Wenping Hu 5
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-07-19 , DOI: 10.1021/accountsmr.4c00054 Junfeng Guo 1, 2 , Chunfeng Shi 3 , Yonggang Zhen 1, 4 , Wenping Hu 5
Affiliation
Organic semiconducting materials have sparked a great deal of interest because of their structural versatility, lightweight, mechanical flexibility, as well as low temperature and large area fabrication, opening up possibilities for the development of next-generation electronic devices. Packing arrangements of organic semiconducting materials influence significantly the optoelectronic performance by alteration of electronic couplings, band structures, and exciton behaviors. The packing structures of small-molecule organic semiconductors can be typically classified into herringbone, slipped, and brickwork motifs. The preferred packing arrangement depends on the steric hindrance driven by the molecular structure and the weight of contribution of each interaction term, which are closely associated with the unpredictable and uncontrollable process of crystal nucleation and growth, involving lots of multiple variables such as the weak and subtle intramolecular or intermolecular interactions in organic materials. Therefore, it remains a long-standing challenge to tailor precisely the packing arrangements for high-performance or multifunctional organic semiconducting materials. In addition, the in-depth relationship between packing arrangements and optoelectronic properties is far from clear, preventing the development of high-performance organic optoelectronic materials.
中文翻译:
合理控制有机半导体材料的堆积排列以实现高性能光电
有机半导体材料因其结构多功能性、轻质、机械灵活性以及低温和大面积制造而引起了人们的极大兴趣,为下一代电子器件的开发提供了可能性。有机半导体材料的堆积排列通过改变电子耦合、能带结构和激子行为来显着影响光电性能。小分子有机半导体的堆积结构通常可分为人字形、滑移形和砖砌形图案。优选的堆积排列取决于分子结构驱动的空间位阻和每个相互作用项的贡献权重,这与晶体成核和生长的不可预测和不可控的过程密切相关,涉及许多多个变量,例如弱相互作用和强相互作用。有机材料中微妙的分子内或分子间相互作用。因此,精确定制高性能或多功能有机半导体材料的封装布置仍然是一个长期存在的挑战。此外,堆积排列与光电性能之间的深层次关系尚不清楚,阻碍了高性能有机光电材料的发展。
更新日期:2024-07-19
中文翻译:
合理控制有机半导体材料的堆积排列以实现高性能光电
有机半导体材料因其结构多功能性、轻质、机械灵活性以及低温和大面积制造而引起了人们的极大兴趣,为下一代电子器件的开发提供了可能性。有机半导体材料的堆积排列通过改变电子耦合、能带结构和激子行为来显着影响光电性能。小分子有机半导体的堆积结构通常可分为人字形、滑移形和砖砌形图案。优选的堆积排列取决于分子结构驱动的空间位阻和每个相互作用项的贡献权重,这与晶体成核和生长的不可预测和不可控的过程密切相关,涉及许多多个变量,例如弱相互作用和强相互作用。有机材料中微妙的分子内或分子间相互作用。因此,精确定制高性能或多功能有机半导体材料的封装布置仍然是一个长期存在的挑战。此外,堆积排列与光电性能之间的深层次关系尚不清楚,阻碍了高性能有机光电材料的发展。