当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large language models outperform mental and medical health care professionals in identifying obsessive-compulsive disorder
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-07-19 , DOI: 10.1038/s41746-024-01181-x
Jiyeong Kim 1 , Kimberly G Leonte 2 , Michael L Chen 1 , John B Torous 3 , Eleni Linos 1 , Anthony Pinto 4, 5 , Carolyn I Rodriguez 6, 7
Affiliation  

Despite the promising capacity of large language model (LLM)-powered chatbots to diagnose diseases, they have not been tested for obsessive-compulsive disorder (OCD). We assessed the diagnostic accuracy of LLMs in OCD using vignettes and found that LLMs outperformed medical and mental health professionals. This highlights the potential benefit of LLMs in assisting in the timely and accurate diagnosis of OCD, which usually entails a long delay in diagnosis and treatment.



中文翻译:


大型语言模型在识别强迫症方面优于心理和医疗保健专业人员



尽管大型语言模型的能力很有前途(LLM )驱动的聊天机器人来诊断疾病,但它们尚未经过强迫症(OCD)测试。我们评估了诊断的准确性LLMs在强迫症中使用小插图并发现LLMs表现优于医疗和心理健康专业人员。这凸显了潜在的好处LLMs协助及时、准确地诊断强迫症,这通常会导致诊断和治疗的长期延误。

更新日期:2024-07-19
down
wechat
bug