当前位置: X-MOL 学术Nat. Rev. Cardiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight
Nature Reviews Cardiology ( IF 41.7 ) Pub Date : 2024-07-19 , DOI: 10.1038/s41569-024-01047-5
Paul D. Morris , Ryan A. Anderton , Karina Marshall-Goebel , Joseph K. Britton , Stuart M. C. Lee , Nicolas P. Smith , Frans N. van de Vosse , Karen M. Ong , Tom A. Newman , Daniel J. Taylor , Tim Chico , Julian P. Gunn , Andrew J. Narracott , D. Rod Hose , Ian Halliday

For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation–perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.



中文翻译:


心血管病理生理学计算模型对商业航天进行风险分层



60多年来,人类一直在太空遨游。到目前为止,大多数宇航员都是专业的政府机构宇航员,部分原因是他们的身体素质极佳且没有疾病。商业航天现在正变得可供公众参与,其中许多人以前因健康状况不佳或患有心肺疾病而被排除在外。虽然存在关于重力和加速度 (G) 对人体生理学影响的数据,但关于航空航天环境对未经选择的公众,尤其是具有临床显着病理学的公众的影响的数据有限。虽然持续时间很短,但这些高加速度可能会损害体验,或者更严重的是,对某些人的健康构成风险。计算模型可能有助于预测心血管疾病的性质和严重程度,而不是让患有现有病理的个体接受重力来收集数据,这些疾病有足够的风险来限制进入、需要修改或建议在飞行前进行进一步的调查或培训。在这篇综述中,我们探索了最先进的、零维的、人类心血管病理生理学的分区模型,该模型可用于模拟加速力、稳态调节和通气-灌注匹配的影响,使用长期研究生成的数据。美国国家航空航天局和欧洲航天局的离心机设施对个人进行风险分层,并帮助提高商业亚轨道航天的安全性。

更新日期:2024-07-19
down
wechat
bug