当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacing Neuron-Motor Pathways with Stretchable and Biocompatible Electrode Arrays
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-07-18 , DOI: 10.1021/acs.accounts.4c00215
Zhi Jiang 1, 2 , Ming Zhu 1 , Xiaodong Chen 1, 3
Affiliation  

In the field of neuroscience, understanding the complex interactions within the intricate neuron-motor system depends crucially on the use of high-density, physiological multiple electrode arrays (MEAs). In the neuron-motor system, the transmission of biological signals primarily occurs through electrical and chemical signaling. Taking neurons for instance, when a neuron receives external stimuli, it generates an electrical signal known as the action potential. This action potential propagates along the neuron’s axon and is transmitted to other neurons via synapses. At the synapse, chemical signals (neurotransmitters) are released, allowing the electrical signal to traverse the synaptic gap and influence the next neuron. MEAs can provide unparalleled insights into neural signal patterns when interfacing with the nerve systems through their excellent spatiotemporal resolution. However, the inherent differences in mechanical and chemical properties between these artificial devices and biological tissues can lead to serious complications after chronic implantation, such as body rejection, infection, tissue damage, or device malfunction. A promising strategy to enhance MEAs’ biocompatibility involves minimizing their thickness, which aligns their bending stiffness with that of surrounding tissues, thereby minimizing damage over time. However, this solution has its limits; the resulting ultrathin devices, typically based on plastic films, lack the necessary stretchability, restricting their use to organs that neither stretch nor grow.

中文翻译:


将神经元-运动通路与可拉伸和生物相容性电极阵列连接



在神经科学领域,了解错综复杂的神经元-运动系统内的复杂相互作用在很大程度上取决于高密度、生理多电极阵列 (MEA) 的使用。在神经元运动系统中,生物信号的传递主要通过电和化学信号传导进行。以神经元为例,当神经元接收到外部刺激时,它会产生一个称为动作电位的电信号。这种动作电位沿着神经元的轴突传播,并通过突触传递到其他神经元。在突触处,化学信号(神经递质)被释放,使电信号能够穿过突触间隙并影响下一个神经元。MEA 可以通过其出色的时空分辨率在与神经系统交互时提供对神经信号模式的无与伦比的见解。然而,这些人工设备与生物组织之间机械和化学特性的固有差异会导致慢性植入后出现严重的并发症,例如身体排斥、感染、组织损伤或设备故障。增强 MEA 生物相容性的一个有前途的策略包括最小化其厚度,这使它们的弯曲刚度与周围组织的弯曲刚度保持一致,从而最大限度地减少随着时间的推移而造成的损害。但是,此解决方案有其局限性;由此产生的超薄器件通常基于塑料薄膜,缺乏必要的可拉伸性,使其只能用于既不拉伸也不生长的器官。
更新日期:2024-07-18
down
wechat
bug