当前位置:
X-MOL 学术
›
Crit. Care
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Prioritising deteriorating patients using time-to-event analysis: prediction model development and internal–external validation
Critical Care ( IF 8.8 ) Pub Date : 2024-07-17 , DOI: 10.1186/s13054-024-05021-y
Robin Blythe 1 , Rex Parsons 1 , Adrian G Barnett 1 , David Cook 2 , Steven M McPhail 1, 3 , Nicole M White 1
Critical Care ( IF 8.8 ) Pub Date : 2024-07-17 , DOI: 10.1186/s13054-024-05021-y
Robin Blythe 1 , Rex Parsons 1 , Adrian G Barnett 1 , David Cook 2 , Steven M McPhail 1, 3 , Nicole M White 1
Affiliation
Binary classification models are frequently used to predict clinical deterioration, however they ignore information on the timing of events. An alternative is to apply time-to-event models, augmenting clinical workflows by ranking patients by predicted risks. This study examines how and why time-to-event modelling of vital signs data can help prioritise deterioration assessments using lift curves, and develops a prediction model to stratify acute care inpatients by risk of clinical deterioration. We developed and validated a Cox regression for time to in-hospital mortality. The model used time-varying covariates to estimate the risk of clinical deterioration. Adult inpatient medical records from 5 Australian hospitals between 1 January 2019 and 31 December 2020 were used for model development and validation. Model discrimination and calibration were assessed using internal–external cross validation. A discrete-time logistic regression model predicting death within 24 h with the same covariates was used as a comparator to the Cox regression model to estimate differences in predictive performance between the binary and time-to-event outcome modelling approaches. Our data contained 150,342 admissions and 1016 deaths. Model discrimination was higher for Cox regression than for discrete-time logistic regression, with cross-validated AUCs of 0.96 and 0.93, respectively, for mortality predictions within 24 h, declining to 0.93 and 0.88, respectively, for mortality predictions within 1 week. Calibration plots showed that calibration varied by hospital, but this can be mitigated by ranking patients by predicted risks. Time-varying covariate Cox models can be powerful tools for triaging patients, which may lead to more efficient and effective care in time-poor environments when the times between observations are highly variable.
中文翻译:
使用事件发生时间分析确定病情恶化患者的优先级:预测模型开发和内部和外部验证
二元分类模型经常用于预测临床恶化,但它们忽略了有关事件发生时间的信息。另一种方法是应用事件发生时间模型,通过预测风险对患者进行排名来增强临床工作流程。本研究探讨了生命体征数据的事件发生时间建模如何以及为什么可以帮助使用提升曲线确定恶化评估的优先级,并开发了一个预测模型,根据临床恶化的风险对急症护理住院患者进行分层。我们开发并验证了住院死亡率时间的 Cox 回归。该模型使用时变协变量来估计临床恶化的风险。2019 年 1 月 1 日至 2020 年 12 月 31 日期间来自 5 家澳大利亚医院的成人住院病历用于模型开发和验证。使用内部-外部交叉验证评估模型鉴别和校准。使用具有相同协变量预测 24 小时内死亡的离散时间 logistic 回归模型作为 Cox 回归模型的比较器,以估计二元和事件发生时间结果建模方法之间预测性能的差异。我们的数据包含 150,342 例入院和 1016 例死亡。Cox 回归的模型鉴别度高于离散时间 logistic 回归,交叉验证的 AUC 分别为 0.96 和 0.93,用于 24 小时内的死亡率预测,1 周内死亡率预测的交叉验证 AUC 分别为 0.93 和 0.88。校准图显示校准因医院而异,但可以通过按预测风险对患者进行排名来缓解这种情况。 时变协变量 Cox 模型可以成为对患者进行分类的强大工具,当观察之间的时间高度可变时,这可能会在时间匮乏的环境中带来更高效和有效的护理。
更新日期:2024-07-19
中文翻译:
使用事件发生时间分析确定病情恶化患者的优先级:预测模型开发和内部和外部验证
二元分类模型经常用于预测临床恶化,但它们忽略了有关事件发生时间的信息。另一种方法是应用事件发生时间模型,通过预测风险对患者进行排名来增强临床工作流程。本研究探讨了生命体征数据的事件发生时间建模如何以及为什么可以帮助使用提升曲线确定恶化评估的优先级,并开发了一个预测模型,根据临床恶化的风险对急症护理住院患者进行分层。我们开发并验证了住院死亡率时间的 Cox 回归。该模型使用时变协变量来估计临床恶化的风险。2019 年 1 月 1 日至 2020 年 12 月 31 日期间来自 5 家澳大利亚医院的成人住院病历用于模型开发和验证。使用内部-外部交叉验证评估模型鉴别和校准。使用具有相同协变量预测 24 小时内死亡的离散时间 logistic 回归模型作为 Cox 回归模型的比较器,以估计二元和事件发生时间结果建模方法之间预测性能的差异。我们的数据包含 150,342 例入院和 1016 例死亡。Cox 回归的模型鉴别度高于离散时间 logistic 回归,交叉验证的 AUC 分别为 0.96 和 0.93,用于 24 小时内的死亡率预测,1 周内死亡率预测的交叉验证 AUC 分别为 0.93 和 0.88。校准图显示校准因医院而异,但可以通过按预测风险对患者进行排名来缓解这种情况。 时变协变量 Cox 模型可以成为对患者进行分类的强大工具,当观察之间的时间高度可变时,这可能会在时间匮乏的环境中带来更高效和有效的护理。