当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cosolvent occupied solvation tuned anti-oxidation therapy toward highly safe 4.7 V-class NCM811 batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-07-18 , DOI: 10.1039/d4ee02074j
Yuqing Chen 1, 2 , Yun Zhao 3 , Aiping Wang 4 , Daozhen Zhang 5 , Baohua Li 3 , Xiangming He 4 , Xiulin Fan 6 , Jilei Liu 1
Affiliation  

Fluorinated electrolytes are promising for stabilizing the interfacial chemistry in high-voltage LiNi0.8Co0.1Mn0.1O2 (NCM811) batteries. However, the design of previous fluorinated electrolytes overlooked the essential role of the cathode–electrolyte interface (CEI) on de-solvation, relying heavily on weak solvation. Theoretically, the cosolvent occupied solvation structure characteristic of the highly antioxidative cosolvent and the easily oxidized salt additive in the first solvation shell is highly desirable to both widen the electrochemical window and promote the anion-enriched CEI to facilitate de-solvation. The key challenges lie in identifying ideal cosolvents that are highly polar, antioxidative, and have a stronger interaction with anions, to replace the solvation site of the main solvents without oxidation of itself and promote the oxidation of additive anions. Herein sulfone (SL) and DFOB are screened out following developed rules, and the interaction relationships are: (i) Li+–cosolvent > Li+–main solvent; (ii) DFOB–cosolvent > DFOB–main solvent; (iii) DFOB–cosolvent > DFOB–Li+. And an optimized fluorinated electrolyte composed of 10% SL and 0.02 M LiDFOB is therefore successfully developed. This occupied solvation design promotes both interfacial/anodic stability and de-solvation under an aggressive 4.7 V. Consequently, ∼400 W h kg−1 NCM811/Li cells at 4.7 V demonstrate an 82% capacity retention after 200 cycles. Commercial NCM811/Gr pouch cells at 4.5 V achieve 92% capacity retention over 500 cycles, concurrently with unexpectedly high safety performance in terms of thermal, mechanical, and electrical abuse. This work underscores the critical impact of solvation site-occupied cosolvent on the CEI modification and kinetics optimization, opening a new avenue for high voltage electrolyte design.

中文翻译:


针对高度安全的 4.7 V 级 NCM811 电池的共溶剂占据溶剂化调节抗氧化疗法



氟化电解质有望稳定高压 LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) 电池中的界面化学。然而,以前的氟化电解质的设计忽视了阴极电解质界面(CEI)在去溶剂化中的重要作用,严重依赖弱溶剂化。理论上,第一溶剂化壳中的高抗氧化共溶剂和易氧化盐添加剂的共溶剂占据的溶剂化结构特征对于拓宽电化学窗口和促进阴离子富集的CEI以促进去溶剂化是非常理想的。关键的挑战在于寻找高极性、抗氧化且与阴离子有更强相互作用的理想助溶剂,以取代主溶剂的溶剂化位点而不使其自身氧化,并促进附加阴离子的氧化。这里按照既定规则筛选出砜(SL)和DFOB ,相互作用关系为:(i)Li + –共溶剂> Li + –主要溶剂; (ii) DFOB – 助溶剂 > DFOB – 主溶剂; (iii) DFOB –共溶剂 > DFOB –Li + 。由此成功开发出由10% SL和0.02 M LiDFOB组成的优化氟化电解质。这种占据溶剂化设计可在 4.7 V 电压下促进界面/阳极稳定性和去溶剂化。因此,~400 W h kg −1 NCM811/Li 电池在 4.7 V 电压下表现出 200 个循环后的 82% 容量保留率。商用 NCM811/Gr 软包电池在 4.5 V 电压下可在 500 个周期内实现 92% 的容量保持率,同时在热、机械和电气滥用方面具有出乎意料的高安全性能。 这项工作强调了溶剂化位点共溶剂对 CEI 改性和动力学优化的关键影响,为高压电解质设计开辟了一条新途径。
更新日期:2024-07-18
down
wechat
bug