当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual‐Vacancy‐Engineered ZnIn2S4 Nanosheets for Harnessing Low‐Frequency Vibration Induced Piezoelectric Polarization Coupled with Static Dipole Field to Enhance Photocatalytic H2 Evolution
Advanced Materials ( IF 27.4 ) Pub Date : 2024-07-18 , DOI: 10.1002/adma.202403228
Wen‐Jia Zhong, Ming‐Yuan Hung, Yen‐Ting Kuo, Hong‐Kang Tian, Chih‐Ning Tsai, Chien‐Jung Wu, Yi‐Dong Lin, Hsiang‐Chun Yu, Yan‐Gu Lin, Jih‐Jen Wu

This study investigates the impact of In‐ and S‐vacancy concentrations on the photocatalytic activity of non‐centrosymmetric zinc indium sulfide (ZIS) nanosheets for the hydrogen evolution reaction (HER). A positive correlation between the concentrations of dual In and S vacancies and the photocatalytic HER rate over ZIS nanosheets is observed. The piezoelectric polarization, stimulated by low‐frequency vortex vibration to ensure the well‐dispersion of ZIS nanosheets in solution, plays a crucial role in enhancing photocatalytic HER over the dual‐vacancy engineered ZIS nanosheets. The piezoelectric characteristic of the defective ZIS nanosheets is confirmed through the piezopotential response measured using piezoelectric force microscopy. Piezophotocatalytic H2 evolution over the ZIS nanosheets is boosted under accelerated vortex vibrations. The research explores how vacancies alter ZIS's dipole moment and piezoelectric properties, thereby increasing electric potential gradient and improving charge‐separation efficiency, through multi‐scale simulations, including Density Functional Theory and Finite Element Analysis, and a machine‐learning interatomic potential for defect identification. Increased In and S vacancies lead to higher electric potential gradients in ZIS along [100] and [010] directions, attributing to dipole moment and the piezoelectric effect. This research provides a comprehensive exploration of vacancy engineering in ZIS nanosheets, leveraging the piezopotential and dipole field to enhance photocatalytic performances.

中文翻译:


双空位设计的 ZnIn2S4 纳米片利用低频振动诱导压电极化与静态偶极场耦合来增强光催化 H2 析出



本研究研究了 In 和 S 空位浓度对非中心对称硫化锌铟 (ZIS) 纳米片析氢反应 (HER) 光催化活性的影响。观察到双 In 和 S 空位的浓度与 ZIS 纳米片上的光催化 HER 速率之间呈正相关。由低频涡旋振动激发的压电极化可确保 ZIS 纳米片在溶液中良好分散,这在增强双空位工程 ZIS 纳米片的光催化 HER 方面发挥着至关重要的作用。有缺陷的 ZIS 纳米片的压电特性通过压电力显微镜测量的压电势响应得到证实。在加速涡旋振动下,ZIS 纳米片上的压电光催化氢气释放得到增强。该研究通过多尺度模拟(包括密度泛函理论和有限元分析)以及用于缺陷识别的机器学习原子间势,探索空位如何改变 ZIS 的偶极矩和压电特性,从而增加电势梯度并提高电荷分离效率。 In 和 S 空位的增加导致 ZIS 中沿 [100] 和 [010] 方向的电势梯度更高,这归因于偶极矩和压电效应。这项研究对 ZIS 纳米片中的空位工程进行了全面的探索,利用压电势和偶极场来增强光催化性能。
更新日期:2024-07-18
down
wechat
bug