当前位置:
X-MOL 学术
›
WIREs Data Mining Knowl. Discov.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A brief review on quantum computing based drug design
WIREs Data Mining and Knowledge Discovery ( IF 6.4 ) Pub Date : 2024-07-17 , DOI: 10.1002/widm.1553 Poulami Das 1 , Avishek Ray 2 , Siddhartha Bhattacharyya 3 , Jan Platos 3 , Vaclav Snasel 3 , Leo Mrsic 4, 5 , Tingwen Huang 6 , Ivan Zelinka 3
WIREs Data Mining and Knowledge Discovery ( IF 6.4 ) Pub Date : 2024-07-17 , DOI: 10.1002/widm.1553 Poulami Das 1 , Avishek Ray 2 , Siddhartha Bhattacharyya 3 , Jan Platos 3 , Vaclav Snasel 3 , Leo Mrsic 4, 5 , Tingwen Huang 6 , Ivan Zelinka 3
Affiliation
Design and development of new drug molecules are essential for the survival of human society. New drugs are designed for therapeutic purposes to combat new diseases. Besides treating new diseases, new drug development is also needed to treat pre‐existing diseases more effectively and reduce the existing drugs' side effects. The design of drugs involves several steps, from the discovery of the drug molecule to its commercialization in the market. One of the most critical steps in drug design is to find the molecular interactions between the target (infected) molecule and the drug molecule. Several complex chemical equations need to be solved to determine the molecular interactions. In the late 20th Century, the advancement of computational technologies has made the solution of chemical equations relatively easier and faster. Moreover, the design of drug molecules involves multi‐criteria optimization. Classical computational methodologies have been used for drug design since the end of the 20th Century. However, nowadays, more advanced computational methodologies are inevitable in designing drugs for new diseases and drugs with fewer side effects. In this context, the quantum computing paradigm has proved beneficial in drug design due to its advanced computational capabilities. This paper presents a state‐of‐the‐art comprehensive review of the quantum computing‐based methodologies involved in drug design. A comparative study is made about the different quantum‐aided drug design methods, stating each methodology's merits and demerits. The review work presented in this manuscript will help new researchers assess the present state‐of‐the‐art concept of quantum‐based drug design.This article is categorized under: Technologies > Structure Discovery and Clustering Technologies > Computational Intelligence Application Areas > Health Care
中文翻译:
基于量子计算的药物设计简述
新药物分子的设计和开发对于人类社会的生存至关重要。新药物是为了治疗目的而设计的,以对抗新疾病。除了治疗新疾病外,还需要开发新药来更有效地治疗已有疾病并减少现有药物的副作用。药物设计涉及几个步骤,从药物分子的发现到其在市场上的商业化。药物设计中最关键的步骤之一是找到目标(感染)分子和药物分子之间的分子相互作用。需要求解几个复杂的化学方程才能确定分子相互作用。 20世纪末,计算技术的进步使得化学方程的求解相对容易和快速。此外,药物分子的设计涉及多标准优化。自 20 世纪末以来,经典计算方法一直被用于药物设计。然而,如今,在设计针对新疾病的药物和副作用更少的药物时,不可避免地需要更先进的计算方法。在这种背景下,量子计算范式因其先进的计算能力而被证明在药物设计中是有益的。本文对药物设计中基于量子计算的方法进行了最先进的全面综述。对不同的量子辅助药物设计方法进行了比较研究,阐述了每种方法的优点和缺点。本手稿中提出的综述工作将帮助新研究人员评估当前基于量子的药物设计的最先进概念。本文分类为:技术 > 结构发现和聚类技术 > 计算智能应用领域 > 医疗保健
更新日期:2024-07-17
中文翻译:
基于量子计算的药物设计简述
新药物分子的设计和开发对于人类社会的生存至关重要。新药物是为了治疗目的而设计的,以对抗新疾病。除了治疗新疾病外,还需要开发新药来更有效地治疗已有疾病并减少现有药物的副作用。药物设计涉及几个步骤,从药物分子的发现到其在市场上的商业化。药物设计中最关键的步骤之一是找到目标(感染)分子和药物分子之间的分子相互作用。需要求解几个复杂的化学方程才能确定分子相互作用。 20世纪末,计算技术的进步使得化学方程的求解相对容易和快速。此外,药物分子的设计涉及多标准优化。自 20 世纪末以来,经典计算方法一直被用于药物设计。然而,如今,在设计针对新疾病的药物和副作用更少的药物时,不可避免地需要更先进的计算方法。在这种背景下,量子计算范式因其先进的计算能力而被证明在药物设计中是有益的。本文对药物设计中基于量子计算的方法进行了最先进的全面综述。对不同的量子辅助药物设计方法进行了比较研究,阐述了每种方法的优点和缺点。本手稿中提出的综述工作将帮助新研究人员评估当前基于量子的药物设计的最先进概念。本文分类为:技术 > 结构发现和聚类技术 > 计算智能应用领域 > 医疗保健