当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical decoherence, spectroscopy, and magnetic g tensors for the 1.5-µm I15/24−I13/24 transitions of Er3+ dopants at the C2-symmetry site in Y2O3
Physical Review B ( IF 3.2 ) Pub Date : 2024-07-17 , DOI: 10.1103/physrevb.110.045132
Thomas Böttger 1 , T. L. Harris 1 , G. D. Reinemer 1 , C. W. Thiel 1 , R. L. Cone 1
Affiliation  

Erbium-doped solids are a promising platform for quantum technology due to the Er3+ 1.5-µm optical transition in the telecom C band that can offer long coherence times. To characterize the intrinsic C2 site of Er3+ in Y2O3 for quantum information and photonic signal-processing applications, absorption and site-selective fluorescence spectroscopy were used to assign the Er3+I15/24 I13/24 transitions. The lowest-to-lowest transition occurs at 1535.608 nm and laser absorption determined an inhomogeneous linewidth of 780 MHz in a 0.005%-doped crystal at 3.4 K. Time-resolved fluorescence established an upper limit for the excited-state lifetime of 8.5 ms. Angular-dependent Zeeman absorption was used to determine ground- and excited-state g tensors. The C2-site g tensor components for the ground state are gx=1.60, gy=4.71, and gz=11.93 with a tipping angle of α = 2.06, whereas for the excited state the components are gx=1.08, gy=4.36, and gz=10.07 with a tipping angle of α = 11.7. Optical decoherence can be suppressed by the application of a magnetic field parallel to 111 crystal axes where all C2 sites become nearly magnetically equivalent with large g values so that spin flips of neighboring Er3+ ions can be simultaneously suppressed. Using this magnetic field direction, two-pulse photon echoes gave a homogeneous linewidth of 5 kHz for an applied magnetic field of 0.5 T, narrowing and saturating at 2.5 kHz at 3.5 T. Decoherence over intermediate magnetic fields was described by spectral diffusion due to Er3+Er3+ magnetic dipole interactions driven by the direct phonon process. With Er3+:Y2O3 absorption at a convenient telecom laser wavelength and the ability to fabricate waveguides, our study suggests that this is a promising material system for quantum information and spectral hole-burning signal-processing applications.

中文翻译:


Y2O3 中 C2 对称位点 Er3+ 掺杂剂的 1.5 µm I15/24−I13/24 跃迁的光学退相干、光谱和磁 g 张量



掺铒固体是量子技术的一个有前途的平台,因为电信 C 波段中的 Er3+ 1.5 µm 光学跃迁可以提供较长的相干时间。为了表征 Y2O3Er3+ 的固有 C2 位点以用于量子信息和光子信号处理应用,使用吸收和位点选择性荧光光谱来分配 Er3+I15/24 I13/24 转换。最低到最低跃迁发生在 1535.608 nm 处,激光吸收在 3.4 K 下确定了 0.005% 掺杂晶体中 780 MHz 的不均匀线宽。时间分辨荧光确定了 8.5 ms 的激发态寿命上限。角度相关的塞曼吸收用于确定基态和激发态 g 张量。基态的 C2 位点 g 张量分量为 gx=1.60gy=4.71gz=11.93 ,其中倾斜角为 α = 2.06 ,而对于激发态,分量为 gx=1.08gy=4.36gz=10.07 ,倾斜角为α = 11.7 。可以通过施加平行于 111 晶轴的磁场来抑制光学退相干,其中所有 C2 位点变得几乎磁等效,具有大的 g 值,以便旋转可以同时抑制相邻 Er3+ 离子的翻转。使用该磁场方向,对于 0.5 T 的外加磁场,两脉冲光子回波给出 5 kHz 的均匀线宽,在 3.5 T 下于 2.5 kHz 处变窄并饱和。由于 < b22> 由直接声子过程驱动的磁偶极子相互作用。 凭借 Er3+ : Y2O3 在方便的电信激光波长下的吸收以及制造波导的能力,我们的研究表明,这是一种用于量子信息和光谱烧孔信号的有前途的材料系统 -处理应用程序。
更新日期:2024-07-22
down
wechat
bug