当前位置:
X-MOL 学术
›
Appl. Phys. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cell integrity maintenance and genetic transfection of protoplasts in an acoustofluidic system
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-07-17 , DOI: 10.1063/5.0216625 Xiaotian Shen 1 , Jieyi Zhang , Tianjiao Zhang 2 , Shuaiqi Wang 2 , Ziyu Han 1 , Jiehua Wang 2 , Xuexin Duan 1
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-07-17 , DOI: 10.1063/5.0216625 Xiaotian Shen 1 , Jieyi Zhang , Tianjiao Zhang 2 , Shuaiqi Wang 2 , Ziyu Han 1 , Jiehua Wang 2 , Xuexin Duan 1
Affiliation
Hydrodynamic force loading platforms based on acoustofluidics have been developed to study the mechanical deformation of cancer cells and to control cell behavior. However, so far there have been no experimental measurements on living plant cells using such an acoustic approach. Unique structures, including cell walls, allow plant cells to exhibit more variation in mechanical resistance. In this work, we analyzed plant cell deformation and membrane permeability using a gigahertz (GHz) acoustofluidic system. By recording the proportion of intact cells in the cell population, we evaluated the mechanical resistance of the protoplasts to the hydrodynamic forces of the acoustic streaming. The results showed that a regenerated primary cell wall (PCW) could significantly improve the mechanical resistance of individual plant cells within 24 h compared to the freshly prepared protoplasts without walls. The results of enzymatic degradation showed that three main components of the primary cell wall contribute to different degrees to the improvement of the mechanical properties of the cells, in decreasing order: cellulose, hemicellulose, and pectin. Furthermore, we have shown that such an acoustofluidic system can alter the permeability of the protoplast membrane in a controllable manner for transient gene expression.
中文翻译:
声流控系统中细胞完整性的维持和原生质体的基因转染
基于声流体学的水动力加载平台已被开发用于研究癌细胞的机械变形并控制细胞行为。然而,到目前为止,还没有使用这种声学方法对活植物细胞进行实验测量。包括细胞壁在内的独特结构使植物细胞在机械阻力方面表现出更多变化。在这项工作中,我们使用千兆赫 (GHz) 声流系统分析了植物细胞变形和膜渗透性。通过记录细胞群中完整细胞的比例,我们评估了原生质体对声流流体动力的机械阻力。结果表明,与新鲜制备的无壁原生质体相比,再生的原代细胞壁(PCW)可以在24小时内显着提高单个植物细胞的机械阻力。酶降解结果表明,初生细胞壁的三种主要成分对细胞力学性能的改善有不同程度的贡献,从大到小依次为:纤维素、半纤维素和果胶。此外,我们还表明,这种声流体系统可以以可控的方式改变原生质体膜的渗透性,以实现瞬时基因表达。
更新日期:2024-07-17
中文翻译:
声流控系统中细胞完整性的维持和原生质体的基因转染
基于声流体学的水动力加载平台已被开发用于研究癌细胞的机械变形并控制细胞行为。然而,到目前为止,还没有使用这种声学方法对活植物细胞进行实验测量。包括细胞壁在内的独特结构使植物细胞在机械阻力方面表现出更多变化。在这项工作中,我们使用千兆赫 (GHz) 声流系统分析了植物细胞变形和膜渗透性。通过记录细胞群中完整细胞的比例,我们评估了原生质体对声流流体动力的机械阻力。结果表明,与新鲜制备的无壁原生质体相比,再生的原代细胞壁(PCW)可以在24小时内显着提高单个植物细胞的机械阻力。酶降解结果表明,初生细胞壁的三种主要成分对细胞力学性能的改善有不同程度的贡献,从大到小依次为:纤维素、半纤维素和果胶。此外,我们还表明,这种声流体系统可以以可控的方式改变原生质体膜的渗透性,以实现瞬时基因表达。