当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light-Induced 1H NMR Hyperpolarization in Solids at 9.4 and 21.1 T
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-07-15 , DOI: 10.1021/jacs.4c06151 Federico De Biasi 1 , Ganesan Karthikeyan 2 , Máté Visegrádi 1 , Marcel Levien 1 , Michael A Hope 1 , Paige J Brown 3 , Michael R Wasielewski 3 , Olivier Ouari 2 , Lyndon Emsley 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-07-15 , DOI: 10.1021/jacs.4c06151 Federico De Biasi 1 , Ganesan Karthikeyan 2 , Máté Visegrádi 1 , Marcel Levien 1 , Michael A Hope 1 , Paige J Brown 3 , Michael R Wasielewski 3 , Olivier Ouari 2 , Lyndon Emsley 1
Affiliation
The inherently low sensitivity of nuclear magnetic resonance (NMR) spectroscopy is the major limiting factor for its application to elucidate structure and dynamics in solids. In the solid state, nuclear spin hyperpolarization methods based on microwave-induced dynamic nuclear polarization (DNP) provide a versatile platform to enhance the bulk NMR signal of many different sample formulations, leading to significant sensitivity improvements. Here we show that 1H NMR hyperpolarization can also be generated in solids at high magnetic fields by optical irradiation of the sample. We achieved this by exploiting a donor–chromophore–acceptor molecule with an excited state electron–electron interaction similar to the nuclear Larmor frequency, enabling solid-state 1H photochemically induced DNP (photo-CIDNP) at high magnetic fields. Through hyperpolarization relay, we obtained bulk NMR signal enhancements εH by factors of ∼100 at both 9.4 and 21.1 T for the 1H signal of o-terphenyl in magic angle spinning (MAS) NMR experiments at 100 K. These findings open a pathway toward a general light-induced hyperpolarization approach for dye-sensitized high-field NMR in solids.
中文翻译:
9.4 和 21.1 T 下固体中的光致 1H NMR 超极化
核磁共振(NMR)波谱固有的低灵敏度是其应用于阐明固体结构和动力学的主要限制因素。在固态中,基于微波诱导动态核极化 (DNP) 的核自旋超极化方法提供了一个通用平台,可以增强许多不同样品配方的本体 NMR 信号,从而显着提高灵敏度。在这里,我们表明,通过样品的光学照射,在高磁场下的固体中也可以产生1 H NMR 超极化。我们通过利用具有类似于核拉莫尔频率的激发态电子-电子相互作用的供体-发色团-受体分子来实现这一目标,从而在高磁场下实现固态1 H 光化学诱导 DNP (photo-CIDNP)。通过超极化中继,我们在 100 K 的魔角旋转 (MAS) NMR 实验中,邻三联苯的1 H 信号在 9.4 和 21.1 T 下获得了约 100 倍的 NMR 信号增强 ε H 。这些发现开辟了一条途径固体中染料敏化高场核磁共振的通用光诱导超极化方法。
更新日期:2024-07-15
中文翻译:
9.4 和 21.1 T 下固体中的光致 1H NMR 超极化
核磁共振(NMR)波谱固有的低灵敏度是其应用于阐明固体结构和动力学的主要限制因素。在固态中,基于微波诱导动态核极化 (DNP) 的核自旋超极化方法提供了一个通用平台,可以增强许多不同样品配方的本体 NMR 信号,从而显着提高灵敏度。在这里,我们表明,通过样品的光学照射,在高磁场下的固体中也可以产生1 H NMR 超极化。我们通过利用具有类似于核拉莫尔频率的激发态电子-电子相互作用的供体-发色团-受体分子来实现这一目标,从而在高磁场下实现固态1 H 光化学诱导 DNP (photo-CIDNP)。通过超极化中继,我们在 100 K 的魔角旋转 (MAS) NMR 实验中,邻三联苯的1 H 信号在 9.4 和 21.1 T 下获得了约 100 倍的 NMR 信号增强 ε H 。这些发现开辟了一条途径固体中染料敏化高场核磁共振的通用光诱导超极化方法。