当前位置: X-MOL 学术Geom. Funct. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Disk-Like Surfaces of Section and Symplectic Capacities
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-07-16 , DOI: 10.1007/s00039-024-00689-4
O. Edtmair

We prove that the cylindrical capacity of a dynamically convex domain in \({\mathbb{R}}^{4}\) agrees with the least symplectic area of a disk-like global surface of section of the Reeb flow on the boundary of the domain. Moreover, we prove the strong Viterbo conjecture for all convex domains in \({\mathbb{R}}^{4}\) which are sufficiently C3 close to the round ball. This generalizes a result of Abbondandolo-Bramham-Hryniewicz-Salomão establishing a systolic inequality for such domains.



中文翻译:


盘状截面和辛容量



我们证明 \({\mathbb{R}}^{4}\) 中动态凸域的柱容量与 Reeb 流边界上的盘状全局表面的最小辛面积一致域。此外,我们证明了 \({\mathbb{R}}^{4}\) 中所有 C 3 足够接近圆球的凸域的强维特博猜想。这概括了 Abbondandolo-Bramham-Hryniewicz-Salomão 为这些域建立收缩不等式的结果。

更新日期:2024-07-17
down
wechat
bug