当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a New Class of BDF and IMEX Schemes for Parabolic Type Equations
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-07-16 , DOI: 10.1137/23m1612986
Fukeng Huang 1 , Jie Shen 2
Affiliation  

SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1609-1637, August 2024.
Abstract. When applying the classical multistep schemes for solving differential equations, one often faces the dilemma that smaller time steps are needed with higher-order schemes, making it impractical to use high-order schemes for stiff problems. We construct in this paper a new class of BDF and implicit-explicit schemes for parabolic type equations based on the Taylor expansions at time [math] with [math] being a tunable parameter. These new schemes, with a suitable [math], allow larger time steps at higher order for stiff problems than that which is allowed with a usual higher-order scheme. For parabolic type equations, we identify an explicit uniform multiplier for the new second- to fourth-order schemes and conduct rigorously stability and error analysis by using the energy argument. We also present ample numerical examples to validate our findings.


中文翻译:


抛物型方程一类新的BDF和IMEX方案



《SIAM 数值分析杂志》,第 62 卷,第 4 期,第 1609-1637 页,2024 年 8 月。

抽象的。当应用经典的多步格式求解微分方程时,人们经常面临这样的困境:高阶格式需要更小的时间步长,这使得使用高阶格式解决刚性问题是不切实际的。我们在本文中构建了一类新的 BDF 和基于时间 [math] 泰勒展开的抛物型方程的隐式-显式方案,其中 [math] 是可调参数。这些新方案具有合适的[数学],与通常的高阶方案相比,对于刚性问题允许在更高阶上使用更大的时间步长。对于抛物型方程,我们为新的二阶到四阶格式确定了一个显式一致乘子,并使用能量参数进行严格的稳定性和误差分析。我们还提供了大量的数值例子来验证我们的发现。
更新日期:2024-07-17
down
wechat
bug