当前位置:
X-MOL 学术
›
Phys. Rev. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-07-16 , DOI: 10.1103/physrevlett.133.033602 Yi Zheng 1, 2 , Zhao-Di Liu 1, 2 , Rui-Heng Miao 1, 2, 3 , Jin-Ming Cui 1, 2, 3 , Mu Yang 1, 2 , Xiao-Ye Xu 1, 2, 3 , Jin-Shi Xu 1, 2, 3 , Chuan-Feng Li 1, 2, 3 , Guang-Can Guo 1, 2, 3
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-07-16 , DOI: 10.1103/physrevlett.133.033602 Yi Zheng 1, 2 , Zhao-Di Liu 1, 2 , Rui-Heng Miao 1, 2, 3 , Jin-Ming Cui 1, 2, 3 , Mu Yang 1, 2 , Xiao-Ye Xu 1, 2, 3 , Jin-Shi Xu 1, 2, 3 , Chuan-Feng Li 1, 2, 3 , Guang-Can Guo 1, 2, 3
Affiliation
With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective method to measure it. Quantum state tomography is costly, and quantum holography requires additional references. Here, we introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function. The joint probability distribution of photon pairs at the back focal plane of a microlens array is measured and used for amplitude extraction and phase reconstruction. In the experiment, we observe that the biphoton amplitude correlation becomes weak while phase correlation shows up during free-space propagation. Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns.
中文翻译:
利用量子波前传感表征双光子空间波函数动力学
纠缠光子的空间自由度具有极高的维数,是量子基础和应用量子技术的关键工具。为了充分利用这一特征,关键任务是通过实验表征多光子空间波函数,包括不同演化阶段的纠缠幅度和相位信息。然而,没有有效的方法来测量它。量子态断层扫描成本高昂,而量子全息术则需要额外的参考资料。在这里,我们引入量子夏克-哈特曼波前传感来对双光子空间波函数进行高效且无参考的测量。测量微透镜阵列后焦平面处光子对的联合概率分布,并将其用于幅度提取和相位重建。在实验中,我们观察到双光子在自由空间传播过程中幅度相关性变弱,而相位相关性出现。我们的工作是量子物理和自适应光学领域的关键一步,为用高阶相关性或拓扑模式表征量子光场铺平了道路。
更新日期:2024-07-17
中文翻译:
利用量子波前传感表征双光子空间波函数动力学
纠缠光子的空间自由度具有极高的维数,是量子基础和应用量子技术的关键工具。为了充分利用这一特征,关键任务是通过实验表征多光子空间波函数,包括不同演化阶段的纠缠幅度和相位信息。然而,没有有效的方法来测量它。量子态断层扫描成本高昂,而量子全息术则需要额外的参考资料。在这里,我们引入量子夏克-哈特曼波前传感来对双光子空间波函数进行高效且无参考的测量。测量微透镜阵列后焦平面处光子对的联合概率分布,并将其用于幅度提取和相位重建。在实验中,我们观察到双光子在自由空间传播过程中幅度相关性变弱,而相位相关性出现。我们的工作是量子物理和自适应光学领域的关键一步,为用高阶相关性或拓扑模式表征量子光场铺平了道路。