当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferromagnetic-Interaction-Induced Spin Symmetry Broken in Ruthenium Oxide for Enhanced Acidic Water Oxidation
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-07-13 , DOI: 10.1021/acscatal.4c02736
Lei Tan 1, 2 , Xiaotong Wu 2 , Haifeng Wang 2 , Jianrong Zeng 3, 4 , Bingbao Mei 3, 4 , Xiangxiang Pan 2 , Weibo Hu 1 , Meharban Faiza 2 , Qi Xiao 1, 2 , Yonghui Zhao 5 , Chao Fu 6 , Chao Lin 1, 2 , Xiaopeng Li 1, 2 , Wei Luo 1, 2
Affiliation  

In the quest to overcome the sluggish kinetics of the oxygen evolution reaction (OER)─a bottleneck in electrochemical water splitting─the mismatched spin quantum numbers between diamagnetic OH/H2O and paramagnetic triplet-state O2 are identified as one of key impediments. These insights underpin the development of feasible strategies for crafting electrocatalysts with enhanced intrinsic OER performance via electron spin regulation. However, prominent acidic OER catalysts (e.g., RuO2, IrO2) employed in proton exchange membrane water electrolyzer (PEMWE) present a challenge in manipulating the electron spin configuration of active sites due to their nonferromagnetic nature. Here, we introduced a spin-symmetry-breaking strategy to alter the electron spin configuration of Ru4+ ions through the synthesis of Mn1–xRuxO2 metal oxide solid solution. By enhancing the ferromagnetic interactions between Ru4+ and Mn3+ ions, the spin density distribution of Ru4+ transforms from symmetric to asymmetric structure, thereby not only boosting the catalytic activity but also enhancing electrochemical stability. The optimized Mn0.4Ru0.6O2 reveals a low overpotential of 196 mV at 10 mA cm–2 and a sustained performance of over 120 h. And the Mn0.4Ru0.6O2-based PEMWE achieved 1.62 V at 1 A cm–2 with promising stability. This work paves the way for the strategic design of acidic OER electrocatalysts through spin-state configuration regulation.

中文翻译:


氧化钌中铁磁相互作用诱导的自旋对称性破缺,用于增强酸性水氧化



为了克服析氧反应 (OER) 的缓慢动力学(电化学水分解的瓶颈),抗磁性 OH /H 2 O 和顺磁性三重态 O 2之间的自旋量子数不匹配被认为是关键之一。障碍。这些见解支持开发可行的策略,通过电子自旋调节来制造具有增强内在 OER 性能的电催化剂。然而,质子交换膜水电解槽(PEMWE)中使用的主要酸性OER催化剂(例如RuO 2 、IrO 2 )由于其非铁磁性而在操纵活性位点的电子自旋构型方面提出了挑战。在这里,我们引入了一种自旋对称性破缺策略,通过合成 Mn 1– x Ru x O 2金属氧化物固溶体来改变 Ru 4+离子的电子自旋构型。通过增强Ru 4+和Mn 3+离子之间的铁磁相互作用,Ru 4+的自旋密度分布从对称结构转变为不对称结构,从而不仅提高了催化活性,而且增强了电化学稳定性。优化后的 Mn 0.4 Ru 0.6 O 2在 10 mA cm –2下具有 196 mV 的低过电势和超过 120 小时的持续性能。 Mn 0.4 Ru 0.6 O 2基PEMWE在1 A cm –2下达到了1.62 V,具有良好的稳定性。 这项工作为通过自旋态构型调节酸性 OER 电催化剂的战略设计铺平了道路。
更新日期:2024-07-13
down
wechat
bug