当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of non-Newtonian biopolymer extrusion and fall in the centrifugal microencapsulation process
AIChE Journal ( IF 3.5 ) Pub Date : 2024-07-16 , DOI: 10.1002/aic.18517
Matei Badalan 1, 2 , Giovanni Ghigliotti 2 , Denis Roux 3 , Guillaume Maîtrejean 3 , Jean‐Luc Achard 1, 2 , Frédéric Bottausci 1 , Guillaume Balarac 2
Affiliation  

We present high-fidelity numerical simulations of the centrifugal microencapsulation process, that is of interest for biomedical applications as cell therapy. We provide first a comprehensive rheological characterization of high-molecular-weight calcium alginate, a commonly used material in microencapsulation. Building upon this, we employ a fluid model that accurately replicates the relevant non-Newtonian properties of the fluid. This model is applied to numerical simulations of the first three stages of the centrifugal microencapsulation process: capillary flow, ejection from the capillary, and fall through the air. The results are successfully compared with experiments. Furthermore, this model, which can be adapted to various centrifugal microencapsulation devices, effectively elucidates the physical factors contributing to different capsule shapes that can be achieved at the end of the process. This breakthrough opens the door to precise control of capsule shapes and production rates.

中文翻译:


离心微胶囊化过程中非牛顿生物聚合物挤出和下落的模拟



我们提出了离心微胶囊化过程的高保真数值模拟,这对于细胞治疗等生物医学应用很有意义。我们首先提供高分子量海藻酸钙(一种微胶囊化常用材料)的全面流变学表征。在此基础上,我们采用了一种流体模型,可以准确地复制流体的相关非牛顿特性。该模型适用于离心微胶囊化过程前三个阶段的数值模拟:毛细管流动、毛细管喷射和空气下落。结果成功地与实验进行了比较。此外,该模型可适用于各种离心微胶囊装置,有效地阐明了导致过程结束时可实现的不同胶囊形状的物理因素。这一突破为精确控制胶囊形状和生产率打开了大门。
更新日期:2024-07-16
down
wechat
bug