Nature Electronics ( IF 33.7 ) Pub Date : 2024-07-15 , DOI: 10.1038/s41928-024-01195-z Nahid Hosseini , Matthias Neuenschwander , Jonathan D. Adams , Santiago H. Andany , Oliver Peric , Marcel Winhold , Maria Carmen Giordano , Vinayak Shantaram Bhat , Marcos Penedo , Dirk Grundler , Georg E. Fantner
Active microelectromechanical systems (MEMS) with integrated electronic sensing and actuation can provide fast and sensitive measurements of force, acceleration and biological analytes. Strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrical signal in applications like atomic force microscopy and molecular detection. However, the high Young’s moduli of traditional MEMS materials, such as silicon or silicon nitride, limit the thickness of the devices and, therefore, the deflection sensitivity that can be obtained for a specific spring constant. Here, we show that polymer materials with a low Young’s modulus can be integrated into polymer–semiconductor–ceramic MEMS cantilevers that are thick and soft. We develop a multi-layer fabrication approach so that high-temperature processes can be used for the deposition and doping of piezoresistive semiconductor strain sensors without damaging the polymer layer. Our trilayer cantilever exhibits a sixfold reduction in force noise compared to a comparable self-sensing silicon cantilever. Furthermore, the strain-sensing electronics in our system are embedded between the polymer and ceramic layers, which makes the technology fluid-compatible.
中文翻译:
用于高灵敏度流体兼容微机电系统的聚合物-半导体-陶瓷悬臂梁
具有集成电子传感和驱动功能的主动微机电系统 (MEMS) 可以提供对力、加速度和生物分析物的快速、灵敏的测量。集成到 MEMS 悬臂梁上的应变传感器广泛用于在原子力显微镜和分子检测等应用中将施加的力转换为电信号。然而,传统 MEMS 材料(例如硅或氮化硅)的高杨氏模量限制了器件的厚度,因此限制了特定弹簧常数可获得的偏转灵敏度。在这里,我们展示了低杨氏模量的聚合物材料可以集成到又厚又软的聚合物-半导体-陶瓷 MEMS 悬臂梁中。我们开发了一种多层制造方法,以便高温工艺可用于压阻半导体应变传感器的沉积和掺杂,而不会损坏聚合物层。与同类自感硅悬臂梁相比,我们的三层悬臂梁的力噪声降低了六倍。此外,我们系统中的应变传感电子器件嵌入在聚合物和陶瓷层之间,这使得该技术具有流体兼容性。