当前位置: X-MOL 学术Biol. Fertil. Soils › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unlocking Zn biofortification: leveraging high-Zn wheat and rhizospheric microbiome interactions in high-pH soils
Biology and Fertility of Soils ( IF 5.1 ) Pub Date : 2024-07-15 , DOI: 10.1007/s00374-024-01849-2
Jun Yang , Chenrui Liu , Runze Wang , Junfeng Xu , Cui Huang , Wenxiang Wang , Siqi Zhang , Wenting She , Xuemei Zhang , Mei Shi , Eduardo Moreno-Jiménez , Yinglong Chen , Zhaohui Wang

Cereals zinc (Zn) biofortification represents an effective strategy for alleviating human Zn malnutrition. However, understanding how to enhance Zn uptake in shoots by optimizing the soil–root interface, particularly considering Zn availability, microbiome interactions, and plant physiology, remains poorly understood, especially in high-pH soils. In this study, we investigated Zn rhizomobilization, plant Zn uptake, and the composition of bacterial and fungal communities in the rhizosphere and roots of ten high-yielding wheat cultivars with consistently contrasting grain Zn concentrations, within calcareous fields. We found that a range of beneficial bacteria, fungi/mycorrhizas, and their interactions play crucial roles in Zn rhizomobilization and wheat Zn uptake. Zn-solubilizing rhizobacteria demonstrated the ability to enhance Zn rhizomobilization, leading to a 35.4% increase in available Zn concentration and a 0.11 units reduction of soil pH. Increased colonization by arbuscular mycorrhizal fungi, along with reduced the presence of fungal pathogens, significantly promoted Zn uptake, ranging from 22 to 132% per unit of root biomass. Additionally, the enriched bacteria relevant with nitrogen cycle and plant growth-promotion not only optimized soil mineral-N/available-P supply but also potentially suppressed fungal pathogens in root and rhizosphere. Optimizing the microbiome to enhance soil nutrient supply and root health emerges as a promising strategy for improving Zn-efficient wheat cultivars’ ability to uptake Zn in shoots. Combining Zn-efficient cultivars with specific soil bacteria and fungi in the rhizosphere holds potential for realizing Zn biofortification in wheat.



中文翻译:


解锁锌生物强化:利用高锌小麦和高 pH 土壤中根际微生物组的相互作用



谷物锌(Zn)生物强化是缓解人类锌营养不良的有效策略。然而,如何通过优化土壤-根界面来增强芽对锌的吸收,特别是考虑锌的可用性、微生物组相互作用和植物生理学,仍然知之甚少,尤其是在高 pH 值土壤中。在这项研究中,我们研究了钙质田地中十个高产小麦品种的根际锌动员、植物锌吸收以及根际和根部细菌和真菌群落的组成,这些小麦品种的籽粒锌浓度始终存在差异。我们发现一系列有益细菌、真菌/菌根及其相互作用在锌的根际动员和小麦锌的吸收中发挥着至关重要的作用。解锌根际细菌表现出增强锌根际移动的能力,导致有效锌浓度增加 35.4%,土壤 pH 值降低 0.11 个单位。丛枝菌根真菌的定殖增加,同时真菌病原体的存在减少,显着促进了锌的吸收,每单位根生物量的锌吸收量从 22% 到 132% 不等。此外,与氮循环和促进植物生长相关的富集细菌不仅优化了土壤矿物质-N/有效-P的供应,而且还可能抑制根部和根际的真菌病原体。优化微生物组以增强土壤养分供应和根系健康是提高锌高效小麦品种在芽中吸收锌能力的一种有前景的策略。将高效锌品种与根际特定土壤细菌和真菌相结合,具有实现小麦锌生物强化的潜力。

更新日期:2024-07-15
down
wechat
bug