当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular-docking electrolytes enable high-voltage lithium battery chemistries
Nature Chemistry ( IF 19.2 ) Pub Date : 2024-07-15 , DOI: 10.1038/s41557-024-01585-y
Baochen Ma 1 , Haikuo Zhang 1 , Ruhong Li 1 , Shuoqing Zhang 1 , Long Chen 1, 2 , Tao Zhou 1 , Jinze Wang 1 , Ruixin Zhang 3 , Shouhong Ding 3 , Xuezhang Xiao 1 , Tao Deng 4 , Lixin Chen 1, 5 , Xiulin Fan 1
Affiliation  

Ideal rechargeable lithium battery electrolytes should promote the Faradaic reaction near the electrode surface while mitigating undesired side reactions. Yet, conventional electrolytes usually show sluggish kinetics and severe degradation due to their high desolvation energy and poor compatibility. Here we propose an electrolyte design strategy that overcomes the limitations associated with Li salt dissociation in non-coordinating solvents to enable fast, stable Li chemistries. The non-coordinating solvents are activated through favourable hydrogen bond interactions, specifically Fδ−–Hδ+ or Hδ+–Oδ−, when blended with fluorinated benzenes or halide alkane compounds. These intermolecular interactions enable a dynamic Li+–solvent coordination process, thereby promoting the fast Li+ reaction kinetics and suppressing electrode side reactions. Utilizing this molecular-docking electrolyte design strategy, we have developed 25 electrolytes that demonstrate high Li plating/stripping Coulombic efficiencies and promising capacity retentions in both full cells and pouch cells. This work supports the use of the molecular-docking solvation mechanism for designing electrolytes with fast Li+ kinetics for high-voltage Li batteries.



中文翻译:


分子对接电解质使高压锂电池化学成为可能



理想的可充电锂电池电解质应促进电极表面附近的法拉第反应,同时减轻不需要的副反应。然而,传统电解质由于其高去溶剂化能和差的相容性通常表现出缓慢的动力学和严重的降解。在这里,我们提出了一种电解质设计策略,克服了非配位溶剂中锂盐离解的限制,从而实现快速、稳定的锂化学反应。当与氟化苯或卤化烷烃化合物混合时,非配位溶剂通过有利的氢键相互作用被激活,特别是 F δ− –H δ+或 H δ+ –O δ− 。这些分子间相互作用能够实现动态的Li + -溶剂配位过程,从而促进快速的Li +反应动力学并抑制电极副反应。利用这种分子对接电解质设计策略,我们开发了 25 种电解质,它们在全电池和软包电池中表现出高锂沉积/剥离库仑效率和良好的容量保持能力。这项工作支持使用分子对接溶剂化机制来设计用于高压锂电池的具有快速Li +动力学的电解质。

更新日期:2024-07-15
down
wechat
bug