当前位置:
X-MOL 学术
›
J. Agron. Crop Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Yield Trait and Stability of Chickpea Genotypes for Intensification of Drought‐Prone Rice Fallows of South Asia
Journal of Agronomy and Crop Science ( IF 3.7 ) Pub Date : 2024-07-14 , DOI: 10.1111/jac.12733 C. P. Nath 1 , U. C. Jha 2 , Narendra Kumar 1 , Raghavendra Singh 1 , Yogesh Kumar 2 , G. P. Dixit 3 , K. K. Hazra 1 , A. K. Srivastava 2
Journal of Agronomy and Crop Science ( IF 3.7 ) Pub Date : 2024-07-14 , DOI: 10.1111/jac.12733 C. P. Nath 1 , U. C. Jha 2 , Narendra Kumar 1 , Raghavendra Singh 1 , Yogesh Kumar 2 , G. P. Dixit 3 , K. K. Hazra 1 , A. K. Srivastava 2
Affiliation
There is a need for increasing cropping intensity in South Asia including India to ensure food security of burgeoning population. Accordingly, increasing cropping intensity in rainfed rice fallows can be a futuristic strategy. Identification of suitable cultivar and exploration of genetic variability of specific crops/traits are imperative for genetic improvement, drought resistance and yield gain in rice fallows. We evaluated the morphophysiological, yield traits and stability of 15 chickpea genotypes in randomised complete block design for three consecutive years on a drought‐prone rainfed condition of Fluvisol in Kanpur, India. Among genotypes, ‘IPC 2014‐55’, ‘IPC 2015‐44’ and ‘IPC 2011‐92’ had 2%–10% higher relative water content (RWC) over ‘ICC‐92944’ (check cultivar). These genotypes did not differ for total chlorophyll content, root dry weight and nodule dry weight with ‘ICC‐92944’ and ‘KWR 108’ (wider adaptable cultivar of the region). The nitrogen balance index was higher in ‘IPC 2011‐92’, ‘IPC 2014‐88’ and ‘IPC 2014‐55’ by 5%–44% over check cultivar (p < 0.05). The membrane stability index was higher for ‘IPC 2014‐55’ (30%, p < 0.05) and ‘IPC 2011‐92’ (17%, p < 0.05) than ‘ICC‐92944’. ‘IPC 2011‐92’, ‘IPC 2014‐88’ and ‘IPC 2014‐55’ (3 years mean) had 3%–24% higher plant dry weight than ‘ICC‐92944’. Notably, ‘IPC 2014‐55’, ‘IPC 2015‐44’, ‘IPC 2014‐88’ and ‘IPC 2011‐92’ had higher yield attributes such as pods plant−1 by 9%, grain weight plant−1 by 13% and 100‐seed weight by 3% than ‘ICC‐92944’ and ‘KWR 108’ (mean of years). These genotypes had higher mean seed yield than ‘ICC‐92944’ by 23%–42% and ‘KWR 108’ by 7%–23% (p < 0.05). The yield of ‘IPC 2014‐55’, ‘IPC 2015‐44’, ‘IPC 2014‐88’ and ‘IPC 2011‐92’ were stable over years across variable soil and environmental condition as indicated by the genotype × year biplot. Membrane stability index, pods plant−1 and 100‐seed weight were the determinants for increased seed yield of chickpea under drought‐prone condition. Evidently, genotype ‘IPC 2014‐55’, ‘IPC 2015‐44’, ‘IPC 2014‐88’ and ‘IPC 2011‐92’ were better under rainfed rice fallows. These genotypes could be tested under specific drought condition for developing varieties and promoted in rice fallows of South Asia for yield advantage and drought resistance.
中文翻译:
南亚易旱水稻休耕强化鹰嘴豆基因型的产量性状和稳定性
包括印度在内的南亚需要增加种植强度,以确保迅速增长的人口的粮食安全。因此,增加雨养水稻休耕地的种植强度可能是一项未来战略。鉴定合适的品种并探索特定作物/性状的遗传变异对于水稻休耕的遗传改良、抗旱和增产至关重要。我们连续三年在印度坎普尔 Fluvisol 易干旱的雨养条件下,采用随机完全区组设计评估了 15 种鹰嘴豆基因型的形态生理、产量性状和稳定性。在基因型中,“IPC 2014-55”、“IPC 2015-44”和“IPC 2011-92”的相对含水量(RWC)比“ICC-92944”(检查品种)高 2%–10%。这些基因型在总叶绿素含量、根干重和根瘤干重方面与“ICC-92944”和“KWR 108”(该地区适应性更广的品种)没有差异。 “IPC 2011-92”、“IPC 2014-88”和“IPC 2014-55”的氮平衡指数比对照品种高 5%–44%(p < 0.05)。 “IPC 2014-55”(30%,p < 0.05)和“IPC 2011-92”(17%,p < 0.05)的膜稳定性指数高于“ICC-92944”。 “IPC 2011-92”、“IPC 2014-88”和“IPC 2014-55”(3 年平均值)的植物干重比“ICC-92944”高 3%–24%。值得注意的是,“IPC 2014-55”、“IPC 2015-44”、“IPC 2014-88”和“IPC 2011-92”具有更高的产量属性,例如豆荚植物−1 增加 9%,粒重植物−1 增加 13 % 和 100 粒种子重量比“ICC-92944”和“KWR 108”(年份平均值)低 3%。这些基因型的平均种子产量比“ICC-92944”高 23%–42%,比“KWR 108”高 7%–23%(p < 0.05)。 正如基因型 × 年双图所示,“IPC 2014-55”、“IPC 2015-44”、“IPC 2014-88”和“IPC 2011-92”的产量在不同的土壤和环境条件下多年来保持稳定。膜稳定性指数、豆荚植株−1 和 100 粒种子重量是干旱条件下鹰嘴豆种子产量增加的决定因素。显然,基因型“IPC 2014-55”、“IPC 2015-44”、“IPC 2014-88”和“IPC 2011-92”在雨养水稻休耕条件下表现更好。这些基因型可以在特定的干旱条件下进行测试以开发品种,并在南亚的水稻休耕中推广以获得产量优势和抗旱性。
更新日期:2024-07-14
中文翻译:
南亚易旱水稻休耕强化鹰嘴豆基因型的产量性状和稳定性
包括印度在内的南亚需要增加种植强度,以确保迅速增长的人口的粮食安全。因此,增加雨养水稻休耕地的种植强度可能是一项未来战略。鉴定合适的品种并探索特定作物/性状的遗传变异对于水稻休耕的遗传改良、抗旱和增产至关重要。我们连续三年在印度坎普尔 Fluvisol 易干旱的雨养条件下,采用随机完全区组设计评估了 15 种鹰嘴豆基因型的形态生理、产量性状和稳定性。在基因型中,“IPC 2014-55”、“IPC 2015-44”和“IPC 2011-92”的相对含水量(RWC)比“ICC-92944”(检查品种)高 2%–10%。这些基因型在总叶绿素含量、根干重和根瘤干重方面与“ICC-92944”和“KWR 108”(该地区适应性更广的品种)没有差异。 “IPC 2011-92”、“IPC 2014-88”和“IPC 2014-55”的氮平衡指数比对照品种高 5%–44%(p < 0.05)。 “IPC 2014-55”(30%,p < 0.05)和“IPC 2011-92”(17%,p < 0.05)的膜稳定性指数高于“ICC-92944”。 “IPC 2011-92”、“IPC 2014-88”和“IPC 2014-55”(3 年平均值)的植物干重比“ICC-92944”高 3%–24%。值得注意的是,“IPC 2014-55”、“IPC 2015-44”、“IPC 2014-88”和“IPC 2011-92”具有更高的产量属性,例如豆荚植物−1 增加 9%,粒重植物−1 增加 13 % 和 100 粒种子重量比“ICC-92944”和“KWR 108”(年份平均值)低 3%。这些基因型的平均种子产量比“ICC-92944”高 23%–42%,比“KWR 108”高 7%–23%(p < 0.05)。 正如基因型 × 年双图所示,“IPC 2014-55”、“IPC 2015-44”、“IPC 2014-88”和“IPC 2011-92”的产量在不同的土壤和环境条件下多年来保持稳定。膜稳定性指数、豆荚植株−1 和 100 粒种子重量是干旱条件下鹰嘴豆种子产量增加的决定因素。显然,基因型“IPC 2014-55”、“IPC 2015-44”、“IPC 2014-88”和“IPC 2011-92”在雨养水稻休耕条件下表现更好。这些基因型可以在特定的干旱条件下进行测试以开发品种,并在南亚的水稻休耕中推广以获得产量优势和抗旱性。