当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spin states of metal centers in electrocatalysis
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-07-15 , DOI: 10.1039/d3cs00913k Yuwei Zhang 1 , Qian Wu 1 , Justin Zhu Yeow Seow 1, 2 , Yingjie Jia 3 , Xiao Ren 3 , Zhichuan J Xu 1, 2
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-07-15 , DOI: 10.1039/d3cs00913k Yuwei Zhang 1 , Qian Wu 1 , Justin Zhu Yeow Seow 1, 2 , Yingjie Jia 3 , Xiao Ren 3 , Zhichuan J Xu 1, 2
Affiliation
Understanding the electronic structure of active sites is crucial in efficient catalyst design. The spin state, spin configurations of d-electrons, has been frequently discussed recently. However, its systematic depiction in electrocatalysis is lacking. In this tutorial review, a comprehensive interpretation of the spin state of metal centers in electrocatalysts and its role in electrocatalysis is provided. This review starts with the basics of spin states, including molecular field theory, crystal field theory, and ligand field theory. It further introduces the differences in low spin, intermediate spin, and high spin, and intrinsic factors affecting the spin state. Popular characterization techniques and modeling approaches that can reveal the spin state, such as X-ray absorption microscopy, electron spin resonance spectroscopy, Mössbauer spectroscopy, and density functional theory (DFT) calculations, are introduced as well with examples from the literature. The examples include the most recent progress in tuning the spin state of metal centers for various reactions, e.g., the oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and urea oxidation reaction. Challenges and potential implications for future research related to the spin state are discussed at the end.
中文翻译:
电催化中金属中心的自旋态
了解活性位点的电子结构对于有效的催化剂设计至关重要。最近经常讨论 d 电子的自旋态、自旋构型。然而,缺乏其在电催化方面的系统描述。在本教程综述中,对电催化剂中金属中心的自旋状态及其在电催化中的作用进行了全面的解释。本综述从自旋态的基础知识开始,包括分子场论、晶体场论和配体场论。进一步介绍了低自旋、中自旋、高自旋的区别以及影响自旋态的内在因素。还介绍了可以揭示自旋态的流行表征技术和建模方法,例如 X 射线吸收显微镜、电子自旋共振光谱、穆斯堡尔光谱和密度泛函理论 (DFT) 计算,以及文献中的示例。这些例子包括调节各种反应的金属中心自旋状态的最新进展,例如析氧反应、氧还原反应、析氢反应、二氧化碳还原反应、氮还原反应、硝酸盐还原反应和尿素氧化反应。反应。最后讨论了与自旋态相关的未来研究的挑战和潜在影响。
更新日期:2024-07-15
中文翻译:
电催化中金属中心的自旋态
了解活性位点的电子结构对于有效的催化剂设计至关重要。最近经常讨论 d 电子的自旋态、自旋构型。然而,缺乏其在电催化方面的系统描述。在本教程综述中,对电催化剂中金属中心的自旋状态及其在电催化中的作用进行了全面的解释。本综述从自旋态的基础知识开始,包括分子场论、晶体场论和配体场论。进一步介绍了低自旋、中自旋、高自旋的区别以及影响自旋态的内在因素。还介绍了可以揭示自旋态的流行表征技术和建模方法,例如 X 射线吸收显微镜、电子自旋共振光谱、穆斯堡尔光谱和密度泛函理论 (DFT) 计算,以及文献中的示例。这些例子包括调节各种反应的金属中心自旋状态的最新进展,例如析氧反应、氧还原反应、析氢反应、二氧化碳还原反应、氮还原反应、硝酸盐还原反应和尿素氧化反应。反应。最后讨论了与自旋态相关的未来研究的挑战和潜在影响。