当前位置:
X-MOL 学术
›
Trends Endocrin. Met.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interorganelle phospholipid communication, a house not so divided
Trends in Endocrinology & Metabolism ( IF 11.4 ) Pub Date : 2024-07-06 , DOI: 10.1016/j.tem.2024.06.008 Richard G Lee 1 , Danielle L Rudler 1 , Oliver Rackham 2 , Aleksandra Filipovska 3
Trends in Endocrinology & Metabolism ( IF 11.4 ) Pub Date : 2024-07-06 , DOI: 10.1016/j.tem.2024.06.008 Richard G Lee 1 , Danielle L Rudler 1 , Oliver Rackham 2 , Aleksandra Filipovska 3
Affiliation
The presence of membrane-bound organelles with specific functions is one of the main hallmarks of eukaryotic cells. Organelle membranes are composed of specific lipids that govern their function and interorganelle communication. Discoveries in cell biology using imaging and omic technologies have revealed the mechanisms that drive membrane remodeling, organelle contact sites, and metabolite exchange. The interplay between multiple organelles and their interdependence is emerging as the next frontier for discovery using 3D reconstruction of volume electron microscopy (vEM) datasets. We discuss recent findings on the links between organelles that underlie common functions and cellular pathways. Specifically, we focus on the metabolism of ether glycerophospholipids that mediate organelle dynamics and their communication with each other, and the new imaging techniques that are powering these discoveries.
中文翻译:
细胞器间磷脂通讯,一个不那么分裂的房子
具有特定功能的膜结合细胞器的存在是真核细胞的主要标志之一。细胞器膜由控制其功能和细胞器间通讯的特定脂质组成。使用成像和组学技术在细胞生物学中的发现揭示了驱动膜重塑、细胞器接触位点和代谢物交换的机制。多个细胞器之间的相互作用及其相互依赖性正在成为使用体积电子显微镜 (vEM) 数据集的 3D 重建进行发现的下一个前沿领域。我们讨论了关于共同功能和细胞通路基础的细胞器之间联系的最新发现。具体来说,我们专注于介导细胞器动力学及其相互通讯的醚甘油磷脂的代谢,以及推动这些发现的新成像技术。
更新日期:2024-07-06
中文翻译:
细胞器间磷脂通讯,一个不那么分裂的房子
具有特定功能的膜结合细胞器的存在是真核细胞的主要标志之一。细胞器膜由控制其功能和细胞器间通讯的特定脂质组成。使用成像和组学技术在细胞生物学中的发现揭示了驱动膜重塑、细胞器接触位点和代谢物交换的机制。多个细胞器之间的相互作用及其相互依赖性正在成为使用体积电子显微镜 (vEM) 数据集的 3D 重建进行发现的下一个前沿领域。我们讨论了关于共同功能和细胞通路基础的细胞器之间联系的最新发现。具体来说,我们专注于介导细胞器动力学及其相互通讯的醚甘油磷脂的代谢,以及推动这些发现的新成像技术。