当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non-metallic Lewis acid sites enhance the activation of peracetic acid by cobalt-iron spinel for micropollutant decontamination: The critical role of Lewis acid sites as electron shuttles
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-07-10 , DOI: 10.1016/j.cej.2024.153924 Guanglei Yao , Shaoze Xiao , Yajie Qian , Tongcai Liu , Yufei Shi , Yalei Zhang , Jiabin Chen , Xuefei Zhou
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-07-10 , DOI: 10.1016/j.cej.2024.153924 Guanglei Yao , Shaoze Xiao , Yajie Qian , Tongcai Liu , Yufei Shi , Yalei Zhang , Jiabin Chen , Xuefei Zhou
Spinel is a common activator for peroxides, e.g., peracetic acid (PAA), in wastewater treatment, but suffers from insufficient electron transfer capacity at the active site and thus the limited activation capacity. Lewis acids are recognized for their capacity to interact with electrons and activate active sites, playing a crucial role in enhancing oxidant adsorption, shortening catalytic reaction distances, and increasing reaction kinetics. Herein, tellurium (Te), a typical Lewis acid, was introduced into cobalt-iron spinel (TCF) as an electron shuttler to improve the electron transfer capacity and thus boost the PAA activation. Results show that the degradation rate of sulfamethoxazole (SMX) with PAA activated via TCF is 4.0 times higher compared with cobalt-iron spinel (CF). Electron spin resonance (ESR) analysis and quenching experiments indicated acetylperoxyl radicals (CH3 C(O)OO· ) as the dominant reactive species in SMX degradation. Electrochemical tests revealed that the introduction of Lewis acid improved the charge transfer ability and charge utilization efficiency of the catalysts, exhibiting less electronic resistance and superior redox properties. Density functional theory (DFT) calculation suggests that the introduction of Lewis acid optimizes the electron distribution of the catalyst, and reduces the crucial reaction energy barriers for PAA activation. Additionally, the distinctive structural environment of Lewis acid renders TCF to exhibit excellent stability and resistance to complicated matrices in PAA activation. This work provides valuable insights into the Lewis acid regulating bimetallic catalyst performance and understanding the intrinsic interaction mechanisms, thereby establishing a critical groundwork for addressing prevailing wastewater treatment.
中文翻译:
非金属路易斯酸位点增强钴铁尖晶石对过乙酸的活化,用于微污染物净化:路易斯酸位点作为电子穿梭的关键作用
尖晶石是废水处理中过氧化物(例如过乙酸(PAA))的常见活化剂,但其活性位点的电子传递能力不足,因此活化能力有限。路易斯酸因其与电子相互作用和激活活性位点的能力而闻名,在增强氧化剂吸附、缩短催化反应距离和提高反应动力学方面发挥着至关重要的作用。在此,将典型的路易斯酸碲(Te)作为电子穿梭剂引入到钴铁尖晶石(TCF)中,以提高电子转移能力,从而促进PAA活化。结果表明,TCF活化PAA对磺胺甲恶唑(SMX)的降解率是钴铁尖晶石(CF)的4.0倍。电子自旋共振 (ESR) 分析和猝灭实验表明乙酰过氧自由基 (CH3C(O)OO) 是 SMX 降解中的主要反应物种。电化学测试表明,路易斯酸的引入提高了催化剂的电荷转移能力和电荷利用效率,表现出较小的电子电阻和优异的氧化还原性能。密度泛函理论(DFT)计算表明,路易斯酸的引入优化了催化剂的电子分布,并降低了PAA活化的关键反应能垒。此外,路易斯酸独特的结构环境使得TCF在PAA活化中表现出优异的稳定性和对复杂基质的抵抗力。 这项工作为路易斯酸调节双金属催化剂性能和理解内在的相互作用机制提供了宝贵的见解,从而为解决普遍的废水处理问题奠定了关键的基础。
更新日期:2024-07-10
中文翻译:
非金属路易斯酸位点增强钴铁尖晶石对过乙酸的活化,用于微污染物净化:路易斯酸位点作为电子穿梭的关键作用
尖晶石是废水处理中过氧化物(例如过乙酸(PAA))的常见活化剂,但其活性位点的电子传递能力不足,因此活化能力有限。路易斯酸因其与电子相互作用和激活活性位点的能力而闻名,在增强氧化剂吸附、缩短催化反应距离和提高反应动力学方面发挥着至关重要的作用。在此,将典型的路易斯酸碲(Te)作为电子穿梭剂引入到钴铁尖晶石(TCF)中,以提高电子转移能力,从而促进PAA活化。结果表明,TCF活化PAA对磺胺甲恶唑(SMX)的降解率是钴铁尖晶石(CF)的4.0倍。电子自旋共振 (ESR) 分析和猝灭实验表明乙酰过氧自由基 (CH3C(O)OO) 是 SMX 降解中的主要反应物种。电化学测试表明,路易斯酸的引入提高了催化剂的电荷转移能力和电荷利用效率,表现出较小的电子电阻和优异的氧化还原性能。密度泛函理论(DFT)计算表明,路易斯酸的引入优化了催化剂的电子分布,并降低了PAA活化的关键反应能垒。此外,路易斯酸独特的结构环境使得TCF在PAA活化中表现出优异的稳定性和对复杂基质的抵抗力。 这项工作为路易斯酸调节双金属催化剂性能和理解内在的相互作用机制提供了宝贵的见解,从而为解决普遍的废水处理问题奠定了关键的基础。