当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting Pt utilization via strategic Co Integration: Structural and mechanistic investigation of High-Performance Pt-Co alloy nanocatalysts for catalytic benzene combustion
Applied Surface Science ( IF 6.3 ) Pub Date : 2024-07-06 , DOI: 10.1016/j.apsusc.2024.160647
Qiqi Zhou , Zhiwei Huang , Jiangwei Ni , Wen Chen , Mingshuo Tian , Juanjuan Gong , Xinlong Liao , Junhong Chen , Shuangning Gan , Jia Chen , Bihong Lv , Xiaomin Wu , Huazhen Shen , Huawang Zhao , Guohua Jing

Platinum (Pt)-based catalysts exhibit notable efficacy in reducing emissions of hazardous volatile organic compounds (VOCs), such as benzene. Nevertheless, the high cost and limited availability of Pt necessitate exploring reasonable strategies to optimize Pt utilization and enhance catalytic efficiency. Thus, pressing needs emerge to develop efficient Pt-based catalysts. This study investigates the catalytic combustion of benzene utilizing an antimony-doped tin oxide (ATO) supported platinum-cobalt (Pt-Co) alloy catalyst. The incorporation of cobalt into Pt nanoparticles leads to Co atoms occupying bulk sites in the Pt-Co alloy, elevating the surface exposure of Pt atoms and enriching Pt on the surface, thereby providing additional active sites for catalysis. Advanced characterization techniques provide critical insights into the morphology, size distribution, crystallinity and valence states of Pt upon strategic Co alloying. Pt-Co/ATO exhibits exceptional low-temperature activity, achieving 95 % benzene conversion at 170 °C, which is 30 °C lower than the 200 °C required for Pt/ATO. Pressure-dependent kinetic analysis reveals a Langmuir-Hinshelwood mechanism involving the co-adsorption of benzene and oxygen reactants on active Pt-Co alloy sites. This study contributes insights into tuning bimetallic alloy nanostructures to optimize noble metal utilization and catalytic performance for VOC abatement, establishing a foundation for advancing sustainable emissions control technology.

中文翻译:


通过战略性钴整合提高铂的利用率:用于催化苯燃烧的高性能铂钴合金纳米催化剂的结构和机理研究



铂 (Pt) 基催化剂在减少苯等有害挥发性有机化合物 (VOC) 的排放方面表现出显着的功效。然而,铂的高成本和有限的可用性使得有必要探索合理的策略来优化铂的利用并提高催化效率。因此,迫切需要开发高效的铂基催化剂。本研究利用掺锑氧化锡 ​​(ATO) 负载的铂钴 (Pt-Co) 合金催化剂研究苯的催化燃烧。将钴掺入 Pt 纳米粒子导致 Co 原子占据 Pt-Co 合金中的大量位点,提高 Pt 原子的表面暴露并富集表面上的 Pt,从而为催化提供额外的活性位点。先进的表征技术为战略性 Co 合金化过程中 Pt 的形态、尺寸分布、结晶度和价态提供了重要的见解。 Pt-Co/ATO 表现出优异的低温活性,在 170°C 下苯转化率达到 95%,比 Pt/ATO 所需的 200°C 低 30°C。压力相关动力学分析揭示了 Langmuir-Hinshelwood 机制,涉及苯和氧反应物在活性 Pt-Co 合金位点上的共吸附。这项研究为调整双金属合金纳米结构以优化贵金属利用率和催化性能以减少 VOC 提供了见解,为推进可持续排放控制技术奠定了基础。
更新日期:2024-07-06
down
wechat
bug