当前位置: X-MOL 学术Aerosp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surrogate-based shape optimization and sensitivity analysis on the aerodynamic performance of HCW configuration
Aerospace Science and Technology ( IF 5.0 ) Pub Date : 2024-06-27 , DOI: 10.1016/j.ast.2024.109347
Xi Xiaozhe , Li Guangli , Zhang Kaikai , Xiao Yao , Chang Siyuan , Cui Kai

With an additional wing upon the fuselage, the novel high-pressure capturing wing (HCW) configuration exhibits remarkable aerodynamic characteristics at hypersonic speeds under beneficial aerodynamic interference. This bi-wing structure can also enhance the lift at subsonic speeds, positioning HCW configuration as an excellent aerodynamic layout under wide-speed range conditions. In this paper, a single-wing principle HCW configuration is carried out to analyze the influence of the variations in the geometric parameters of the HCW on the aerodynamic performance. Drawing on extant research, four key geometric parameters of the HCW are chosen as design variables, and the hypersonic as well as supersonic conditions are selected for surrogate-based shape optimization. Utilizing polynomial response surface method and method of moving asymptotes, the single-objective optimization studies are carried out with the objectives of maximum lift-to-drag ratio at = 6 and minimum drag coefficient at = 3. Subsequently, the sensitivity analysis is performed for each design parameter. The above methods exhibit notable precision and favorable results. The results show that except for the leading-edge sweep angle, the other three optimization results exhibit divergent trends in their variations. The setting angle has the most significant influence on the aerodynamic forces, owing to the influences of its variation on the shock wave intensity and reflection angle. Based on the stronger intensity of shock wave, this sensitivity indices are higher at = 6. The other three parameters (half-span, leading-edge sweep angle, and trailing-edge sweep angle) modify the aerodynamic forces by adjusting the area of high-pressure region on HCW. Due to the different flow field structures, optimum parameters exhibit diverse effects on lift coefficient and lift-to-drag ratio.

中文翻译:


HCW构型气动性能的基于替代的形状优化和敏感性分析



通过机身上的附加机翼,新颖的高压捕获翼(HCW)配置在有益的空气动力干扰下在高超音速下表现出显着的空气动力特性。这种双翼结构还可以增强亚音速下的升力,使 HCW 构型成为宽速范围条件下出色的气动布局。本文采用单翼原理HCW构型,分析HCW几何参数变化对气动性能的影响。借鉴现有研究,选择HCW的四个关键几何参数作为设计变量,并选择高超音速和超音速条件进行基于替代的形状优化。采用多项式响应面法和移动渐近线法,以最大升阻比=6、最小阻力系数=3为目标进行单目标优化研究,并进行灵敏度分析每个设计参数。上述方法显示出显着的精度和良好的结果。结果表明,除前缘后掠角外,其他三个优化结果的变化趋势均呈现不同趋势。设置角对气动力的影响最为显着,因为它的变化对冲击波强度和反射角都有影响。基于激波强度较强,该灵敏度指数在 = 6 时较高。其他三个参数(半跨度、前缘后掠角和后缘后掠角)通过调整高的面积来修改气动力。 -医护人员的压力区域。 由于流场结构不同,最佳参数对升力系数和升阻比的影响也不同。
更新日期:2024-06-27
down
wechat
bug