当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unraveling the Roles of Switching and Relaxation Times in Volatile Electrochemical Memristors to Mimic Neuromorphic Dynamical Features
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2024-07-13 , DOI: 10.1002/aelm.202400221 Mrinmoy Dutta 1 , Stefano Brivio 1 , Sabina Spiga 1
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2024-07-13 , DOI: 10.1002/aelm.202400221 Mrinmoy Dutta 1 , Stefano Brivio 1 , Sabina Spiga 1
Affiliation
Computing through ensembles of interacting dynamical elements is the next frontier of the diverse field of neuromorphic computing. Spiking neural networks are one of the possible examples. Computation through dynamics and through time requires the development of novel technologies for devices with rich dynamics. Among the various candidates, the most promising ones are volatile electrochemical memristive systems that switch from high to low resistance state by voltage application and self-recover the high resistance state after a tunable relaxation time. Such devices can perform a wide variety of computational primitives. However, a clear comprehensive picture of their possible dynamics and their physical interpretation is still missing. In the present manuscript, prototypical electrochemical silver/silicon oxide/platinum (Ag/SiOx/Pt) memristive devices are characterized to identify dynamical aspects, like integrative effects and stochastic switching. Integrative effects are evidenced both in high and low resistance states, associated to wake-up phase and cumulative switching. All the dynamical aspects are related to characteristic switching times and relaxation times, and with reference to the electrochemical and physical processes involved in device operation. The various dynamical aspects are linked to short-term memory effects and basic temporal processing functions based on paired-pulse effects that are relevant for neuromorphic applications.
中文翻译:
揭示易失性电化学忆阻器中开关和弛豫时间对模拟神经形态动力学特征的作用
通过相互作用的动态元素集合进行计算是神经形态计算多样化领域的下一个前沿。尖峰神经网络是可能的例子之一。通过动力学和时间进行计算需要为具有丰富动力学的设备开发新技术。在各种候选者中,最有前途的是挥发性电化学忆阻系统,它通过施加电压从高电阻状态切换到低电阻状态,并在可调弛豫时间后自动恢复高电阻状态。此类设备可以执行多种计算原语。然而,仍然缺乏对它们可能的动力学及其物理解释的清晰全面的了解。在本手稿中,原型电化学银/氧化硅/铂(Ag/SiO x /Pt)忆阻器件的特征在于识别动力学方面,例如综合效应和随机切换。与唤醒阶段和累积切换相关的高电阻状态和低电阻状态都表现出综合效应。所有动态方面都与特征切换时间和弛豫时间有关,并参考器件操作中涉及的电化学和物理过程。各种动态方面与短期记忆效应和基于与神经形态应用相关的成对脉冲效应的基本时间处理功能相关。
更新日期:2024-07-13
中文翻译:
揭示易失性电化学忆阻器中开关和弛豫时间对模拟神经形态动力学特征的作用
通过相互作用的动态元素集合进行计算是神经形态计算多样化领域的下一个前沿。尖峰神经网络是可能的例子之一。通过动力学和时间进行计算需要为具有丰富动力学的设备开发新技术。在各种候选者中,最有前途的是挥发性电化学忆阻系统,它通过施加电压从高电阻状态切换到低电阻状态,并在可调弛豫时间后自动恢复高电阻状态。此类设备可以执行多种计算原语。然而,仍然缺乏对它们可能的动力学及其物理解释的清晰全面的了解。在本手稿中,原型电化学银/氧化硅/铂(Ag/SiO x /Pt)忆阻器件的特征在于识别动力学方面,例如综合效应和随机切换。与唤醒阶段和累积切换相关的高电阻状态和低电阻状态都表现出综合效应。所有动态方面都与特征切换时间和弛豫时间有关,并参考器件操作中涉及的电化学和物理过程。各种动态方面与短期记忆效应和基于与神经形态应用相关的成对脉冲效应的基本时间处理功能相关。