Nature Communications ( IF 14.7 ) Pub Date : 2024-07-13 , DOI: 10.1038/s41467-024-50126-1 Mher Garibyan 1, 2, 3 , Tyler Hoffman 4 , Thijs Makaske 1, 2, 5 , Stephanie K Do 3 , Yifan Wu 4 , Brian A Williams 6 , Alexander R March 1, 2 , Nathan Cho 3 , Nicolas Pedroncelli 4 , Ricardo Espinosa Lima 4 , Jennifer Soto 4 , Brooke Jackson 4 , Jeffrey W Santoso 3 , Ali Khademhosseini 4, 7 , Matt Thomson 6 , Song Li 4, 8, 9 , Megan L McCain 1, 3 , Leonardo Morsut 1, 2, 3
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
中文翻译:
通过合成Notch受体设计可编程的材料到细胞途径,以空间控制多细胞结构的分化
合成Notch (synNotch) 受体是基因编码的模块化合成受体,使哺乳动物细胞能够检测环境信号并通过激活用户指定的转录程序做出反应。尽管一些材料已被修改以呈现具有粗略空间控制的 synNotch 配体,但组织工程中的应用通常需要细胞外基质 (ECM) 衍生的支架和/或更精细的多个配体空间定位。因此,我们在这里开发了一套激活 synNotch 受体的材料,用于材料到细胞信号传导的通用工程。我们通过基因和化学方法将功能性 synNotch 配体融合到 ECM 蛋白和 ECM 衍生材料上。我们还通过在用两个 synNotch 配体微接触印刷的表面上培养具有两个正交 synNotch 程序的细胞,生成具有四种不同报告表型的微米级精度的组织。最后,我们通过将成纤维细胞以用户定义的微模式共转分化为骨骼肌或内皮细胞前体来展示在组织工程中的应用。这些技术为空间控制哺乳动物组织中的细胞表型提供了途径。