当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Absorption-dominant electromagnetic interference shielding material using MXene-coated polyvinylidene fluoride foam
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-09 , DOI: 10.1016/j.mtphys.2024.101509 Nam Khanh Nguyen , Sol Lee , Quy-Dat Nguyen , Pangun Park , Ick-Jae Yoon , Junghyo Nah
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-09 , DOI: 10.1016/j.mtphys.2024.101509 Nam Khanh Nguyen , Sol Lee , Quy-Dat Nguyen , Pangun Park , Ick-Jae Yoon , Junghyo Nah
MXene (TiCT), known for its exceptional electrical conductivity, unique two-dimensional structure, extensive surface functionality, and hydrophilicity, has emerged as a leading candidate for electromagnetic interference (EMI) shielding applications. Despite these excellent characteristics, EMI shielding materials based on MXene mostly utilize the reflection mechanism, which may cause secondary interferences. This study introduces an approach to utilize MXene as absorption-dominant EMI shielding materials. By engineering a porous layer of polyvinylidene fluoride (PVDF) atop MXene nanoflakes, we achieved a synergistic enhancement in EMI shielding effectiveness (SE) and absorptivity. The PVDF foam serves as an effective impedance matching layer, substantially enhancing the absorption of electromagnetic waves into the shielding material. Incorporating electrically conductive MXene nanoflakes to form a thin film creates a robust conductive network, fully leveraging its inherent performance. This network efficiently dissipates EM waves, thereby significantly enhancing the EMI SE. The shielding performance of this composite was thoroughly evaluated across both the X-band (8.2 GHz–12.4 GHz) and the Ka-band (26.5 GHz–40 GHz) frequencies. It demonstrated high EMI SE, attributed to mechanisms predominantly based on absorption. Specifically, it achieved an EMI SE of approximately 63.3 dB with high absorptivity (0.74) in the X-band and approximately 73.3 dB with high absorptivity (0.85) in the Ka-band. These findings underscore its potential as a route to develop absorption-dominant EMI shielding materials.
中文翻译:
使用 MXene 涂层聚偏二氟乙烯泡沫的吸收为主的电磁干扰屏蔽材料
MXene (TiCT) 以其卓越的导电性、独特的二维结构、广泛的表面功能和亲水性而闻名,已成为电磁干扰 (EMI) 屏蔽应用的主要候选材料。尽管具有这些优异的特性,但基于MXene的EMI屏蔽材料大多利用反射机制,这可能会造成二次干扰。本研究介绍了一种利用 MXene 作为吸收为主的 EMI 屏蔽材料的方法。通过在 MXene 纳米薄片顶部设计多孔聚偏二氟乙烯 (PVDF) 层,我们实现了 EMI 屏蔽效能 (SE) 和吸收率的协同增强。 PVDF 泡沫作为有效的阻抗匹配层,大大增强了屏蔽材料对电磁波的吸收。结合导电 MXene 纳米薄片形成薄膜,可创建强大的导电网络,充分利用其固有性能。该网络可有效消散电磁波,从而显着增强 EMI SE。该复合材料的屏蔽性能在 X 频段 (8.2 GHz–12.4 GHz) 和 Ka 频段 (26.5 GHz–40 GHz) 频率上进行了全面评估。它表现出高 EMI SE,这归因于主要基于吸收的机制。具体而言,它在 X 波段中实现了约 63.3 dB 的 EMI SE,具有高吸收率 (0.74),在 Ka 波段中实现了约 73.3 dB 的高吸收率 (0.85)。这些发现强调了其作为开发以吸收为主的 EMI 屏蔽材料的途径的潜力。
更新日期:2024-07-09
中文翻译:
使用 MXene 涂层聚偏二氟乙烯泡沫的吸收为主的电磁干扰屏蔽材料
MXene (TiCT) 以其卓越的导电性、独特的二维结构、广泛的表面功能和亲水性而闻名,已成为电磁干扰 (EMI) 屏蔽应用的主要候选材料。尽管具有这些优异的特性,但基于MXene的EMI屏蔽材料大多利用反射机制,这可能会造成二次干扰。本研究介绍了一种利用 MXene 作为吸收为主的 EMI 屏蔽材料的方法。通过在 MXene 纳米薄片顶部设计多孔聚偏二氟乙烯 (PVDF) 层,我们实现了 EMI 屏蔽效能 (SE) 和吸收率的协同增强。 PVDF 泡沫作为有效的阻抗匹配层,大大增强了屏蔽材料对电磁波的吸收。结合导电 MXene 纳米薄片形成薄膜,可创建强大的导电网络,充分利用其固有性能。该网络可有效消散电磁波,从而显着增强 EMI SE。该复合材料的屏蔽性能在 X 频段 (8.2 GHz–12.4 GHz) 和 Ka 频段 (26.5 GHz–40 GHz) 频率上进行了全面评估。它表现出高 EMI SE,这归因于主要基于吸收的机制。具体而言,它在 X 波段中实现了约 63.3 dB 的 EMI SE,具有高吸收率 (0.74),在 Ka 波段中实现了约 73.3 dB 的高吸收率 (0.85)。这些发现强调了其作为开发以吸收为主的 EMI 屏蔽材料的途径的潜力。